Background: Immune checkpoint inhibitors (ICI) are approved for treatment of recurrent or metastatic oropharyngeal head and neck squamous cell carcinoma in the first- and second-line settings. However, only 15-20% of patients benefit from this treatment, a feature increasingly ascribed to the peculiar characteristics of the tumor immune microenvironment (TIME). Methods: Immune-related gene expression profiling (GEP) and multiplex immunofluorescence (mIF) including spatial proximity analysis, were used to characterize the TIME of 39 treatment-naïve oropharyngeal squamous cell carcinomas (OPSCC) and the corresponding lymph node metastases. GEP and mIF results were correlated with disease-free survival (DFS). HPV-positive tumors disclosed a stronger activation of several immune signalling pathways, as well as a higher expression of genes related to total tumor-infiltrating lymphocytes, CD8 T cells, cytotoxic cells and exhausted CD8 cells, than HPV-negative patients. Accordingly, mIF revealed that HPV-positive lesions were heavily infiltrated as compared to HPV-negative counterparts, with a higher density of T cells and checkpoint molecules. CD8+ T cells appeared in closer proximity to tumor cells, CD163+ macrophages and FoxP3+ cells in HPV-positive primary tumors, and related metastases. In HPV-positive lesions, PD-L1 expression was increased as compared to HPV-negative samples, and PD-L1+ tumor cells and macrophages were closer to PD-1+ cytotoxic T lymphocytes. Considering the whole cohort, a positive correlation was observed between DFS and higher levels of activating immune signatures and T cell responses, higher density of PD-1+ T cells and their closer proximity to tumor cells or PD-L1+ macrophages. HPV-positive patients with higher infiltration of T cells and macrophages had a longer DFS, while CD163+ macrophages had a negative role in prognosis of HPV-negative patients. Conclusions: Our results suggest that checkpoint expression may reflect an ongoing antitumor immune response. Thus, these observations provide the rationale for the incorporation of ICI in the loco-regional therapy strategies for patients with heavily infiltrated treatment-naïve OPSCC, and for the combination of ICI with tumor-specific T cell response inducers or TAM modulators for the "cold" OPSCC counterparts.

The immune microenvironment of HPV-positive and HPV-negative oropharyngeal squamous cell carcinoma: a multiparametric quantitative and spatial analysis unveils a rationale to target treatment-naïve tumors with immune checkpoint inhibitors

Spinato, Giacomo;Bussani, Rossana;Zanconati, Fabrizio;Tofanelli, Margherita;Tirelli, Giancarlo;Boscolo-Rizzo, Paolo;Rosato, Antonio
2022

Abstract

Background: Immune checkpoint inhibitors (ICI) are approved for treatment of recurrent or metastatic oropharyngeal head and neck squamous cell carcinoma in the first- and second-line settings. However, only 15-20% of patients benefit from this treatment, a feature increasingly ascribed to the peculiar characteristics of the tumor immune microenvironment (TIME). Methods: Immune-related gene expression profiling (GEP) and multiplex immunofluorescence (mIF) including spatial proximity analysis, were used to characterize the TIME of 39 treatment-naïve oropharyngeal squamous cell carcinomas (OPSCC) and the corresponding lymph node metastases. GEP and mIF results were correlated with disease-free survival (DFS). HPV-positive tumors disclosed a stronger activation of several immune signalling pathways, as well as a higher expression of genes related to total tumor-infiltrating lymphocytes, CD8 T cells, cytotoxic cells and exhausted CD8 cells, than HPV-negative patients. Accordingly, mIF revealed that HPV-positive lesions were heavily infiltrated as compared to HPV-negative counterparts, with a higher density of T cells and checkpoint molecules. CD8+ T cells appeared in closer proximity to tumor cells, CD163+ macrophages and FoxP3+ cells in HPV-positive primary tumors, and related metastases. In HPV-positive lesions, PD-L1 expression was increased as compared to HPV-negative samples, and PD-L1+ tumor cells and macrophages were closer to PD-1+ cytotoxic T lymphocytes. Considering the whole cohort, a positive correlation was observed between DFS and higher levels of activating immune signatures and T cell responses, higher density of PD-1+ T cells and their closer proximity to tumor cells or PD-L1+ macrophages. HPV-positive patients with higher infiltration of T cells and macrophages had a longer DFS, while CD163+ macrophages had a negative role in prognosis of HPV-negative patients. Conclusions: Our results suggest that checkpoint expression may reflect an ongoing antitumor immune response. Thus, these observations provide the rationale for the incorporation of ICI in the loco-regional therapy strategies for patients with heavily infiltrated treatment-naïve OPSCC, and for the combination of ICI with tumor-specific T cell response inducers or TAM modulators for the "cold" OPSCC counterparts.
22-set-2022
Pubblicato
https://jeccr.biomedcentral.com/articles/10.1186/s13046-022-02481-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487049/
File in questo prodotto:
File Dimensione Formato  
2022_Tosi.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.02 MB
Formato Adobe PDF
3.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3030378
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact