Hyper-luminous quasars (L-bol & x2004;greater than or similar to & x2004;10(47) erg s(-1)) are ideal laboratories to study the interaction and impact of the extreme radiative field and the most powerful winds in the active galactic nuclei (AGN) nuclear regions. They typically exhibit low coronal X-ray luminosity (L-X) compared to the ultraviolet (UV) and mid-infrared (MIR) radiative outputs (L-UV and L-UV); a non-negligible fraction of them report even similar to 1 dex weaker L-X compared to the prediction of the well established L-X-L-UV and L-X-L-UV relations followed by the bulk of the AGN population. In our WISE/SDSS-selected Hyper-luminous (WISSH) z & x2004;=& x2004;2 - 4 broad-line quasar sample, we report on the discovery of a dependence between the intrinsic 2-10 keV luminosity (L2 - 10) and the blueshifted velocity of the CIV emission line (v(CIV)) that is indicative of accretion disc winds. In particular, sources with the fastest winds (v(CIV) greater than or similar to 3000 km s(-1)) possess similar to 0.5-1 dex lower L2 - 10 than sources with negligible v(CIV). No similar dependence is found on L-UV, L-UV, L-bol, the photon index, or the absorption column density. We interpret these findings in the context of accretion disc wind models. Both magnetohydrodynamic and line-driven models can qualitatively explain the reported relations as a consequence of X-ray shielding from the inner wind regions. In case of line-driven winds, the launch of fast winds is favoured by a reduced X-ray emission, and we speculate that these winds may play a role in directly limiting the coronal hard X-ray production.

The WISSH quasars project VII. The impact of extreme radiative field in the accretion disc and X-ray corona interplay

M. Bischetti;
2020-01-01

Abstract

Hyper-luminous quasars (L-bol & x2004;greater than or similar to & x2004;10(47) erg s(-1)) are ideal laboratories to study the interaction and impact of the extreme radiative field and the most powerful winds in the active galactic nuclei (AGN) nuclear regions. They typically exhibit low coronal X-ray luminosity (L-X) compared to the ultraviolet (UV) and mid-infrared (MIR) radiative outputs (L-UV and L-UV); a non-negligible fraction of them report even similar to 1 dex weaker L-X compared to the prediction of the well established L-X-L-UV and L-X-L-UV relations followed by the bulk of the AGN population. In our WISE/SDSS-selected Hyper-luminous (WISSH) z & x2004;=& x2004;2 - 4 broad-line quasar sample, we report on the discovery of a dependence between the intrinsic 2-10 keV luminosity (L2 - 10) and the blueshifted velocity of the CIV emission line (v(CIV)) that is indicative of accretion disc winds. In particular, sources with the fastest winds (v(CIV) greater than or similar to 3000 km s(-1)) possess similar to 0.5-1 dex lower L2 - 10 than sources with negligible v(CIV). No similar dependence is found on L-UV, L-UV, L-bol, the photon index, or the absorption column density. We interpret these findings in the context of accretion disc wind models. Both magnetohydrodynamic and line-driven models can qualitatively explain the reported relations as a consequence of X-ray shielding from the inner wind regions. In case of line-driven winds, the launch of fast winds is favoured by a reduced X-ray emission, and we speculate that these winds may play a role in directly limiting the coronal hard X-ray production.
File in questo prodotto:
File Dimensione Formato  
Zappacosta-2020.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 430.92 kB
Formato Adobe PDF
430.92 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3037071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact