In recent years, structural health monitoring (SHM) has received increasing interest from both research and professional engineering communities. This is due to the limitations related to the use of traditional methods based on visual inspection for a rapid and effective assessment of structures and infrastructures when compared with the great potential offered by newly developed automatic systems. Most of these kinds of systems allow the continuous estimation of structural modal properties that are strictly correlated to the mechanical characteristics of the monitored structure. These can change as a result of material deterioration and structural damage related to earthquake shaking. Furthermore, a suitable configuration of a dense sensor network in a real-time monitoring system can allow to detect and localize structural and non-structural damage by comparing the initial and a final state of the structure after a critical event, such as a relevant earthquake. In this paper, the modal curvature evaluation method, used for damage detection and localization on framed structures, considering the mode curvature variation due to strong earthquake shaking, is further developed. The modified approach is validated by numerical and experimental case studies. The extended procedure, named "Curvature Evolution Method" (CEM), reduces the required computing time and the uncertainties in the results. Furthermore, in this work, an empirical relationship between curvature variation and damage index has been defined for both bare and infilled frames.

Damage Detection and Localization on Real Structures Subjected to Strong Motion Earthquakes Using the Curvature Evolution Method: The Navelli (Italy) Case Study

Parolai S;
2021-01-01

Abstract

In recent years, structural health monitoring (SHM) has received increasing interest from both research and professional engineering communities. This is due to the limitations related to the use of traditional methods based on visual inspection for a rapid and effective assessment of structures and infrastructures when compared with the great potential offered by newly developed automatic systems. Most of these kinds of systems allow the continuous estimation of structural modal properties that are strictly correlated to the mechanical characteristics of the monitored structure. These can change as a result of material deterioration and structural damage related to earthquake shaking. Furthermore, a suitable configuration of a dense sensor network in a real-time monitoring system can allow to detect and localize structural and non-structural damage by comparing the initial and a final state of the structure after a critical event, such as a relevant earthquake. In this paper, the modal curvature evaluation method, used for damage detection and localization on framed structures, considering the mode curvature variation due to strong earthquake shaking, is further developed. The modified approach is validated by numerical and experimental case studies. The extended procedure, named "Curvature Evolution Method" (CEM), reduces the required computing time and the uncertainties in the results. Furthermore, in this work, an empirical relationship between curvature variation and damage index has been defined for both bare and infilled frames.
File in questo prodotto:
File Dimensione Formato  
ditommaso_et_al_2021_AS.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 9.82 MB
Formato Adobe PDF
9.82 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3037724
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact