The telomeric repeat-binding factor 2 (TRF2) is a telomere-capping protein that plays a key role in the maintenance of telomere structure and function. It is highly expressed in different cancer types, and it contributes to cancer progression. To date, anti-cancer strategies to target TRF2 remain a challenge. Here, we developed a miRNA-based approach to reduce TRF2 expression. By performing a high-throughput luciferase screening of 54 candidate miRNAs, we identified miR-182-3p as a specific and efficient post-transcriptional regulator of TRF2. Ectopic expression of miR-182-3p drastically reduced TRF2 protein levels in a panel of telomerase- or alternative lengthening of telomeres (ALT)-positive cancer cell lines. Moreover, miR-182-3p induced DNA damage at telomeric and pericentromeric sites, eventually leading to strong apoptosis activation. We also observed that treatment with lipid nanoparticles (LNPs) containing miR-182-3p impaired tumor growth in triple-negative breast cancer (TNBC) models, including patient-derived tumor xenografts (PDTXs), without affecting mouse survival or tissue function. Finally, LNPs-miR-182-3p were able to cross the blood-brain barrier and reduce intracranial tumors representing a possible therapeutic option for metastatic brain lesions.

MiR-182-3p targets TRF2 and impairs tumor growth of triple-negative breast cancer

Dinami, Roberto;Petti, Eleonora;Giacca, Mauro;Ciliberto, Gennaro;Schoeftner, Stefan;
2023-01-01

Abstract

The telomeric repeat-binding factor 2 (TRF2) is a telomere-capping protein that plays a key role in the maintenance of telomere structure and function. It is highly expressed in different cancer types, and it contributes to cancer progression. To date, anti-cancer strategies to target TRF2 remain a challenge. Here, we developed a miRNA-based approach to reduce TRF2 expression. By performing a high-throughput luciferase screening of 54 candidate miRNAs, we identified miR-182-3p as a specific and efficient post-transcriptional regulator of TRF2. Ectopic expression of miR-182-3p drastically reduced TRF2 protein levels in a panel of telomerase- or alternative lengthening of telomeres (ALT)-positive cancer cell lines. Moreover, miR-182-3p induced DNA damage at telomeric and pericentromeric sites, eventually leading to strong apoptosis activation. We also observed that treatment with lipid nanoparticles (LNPs) containing miR-182-3p impaired tumor growth in triple-negative breast cancer (TNBC) models, including patient-derived tumor xenografts (PDTXs), without affecting mouse survival or tissue function. Finally, LNPs-miR-182-3p were able to cross the blood-brain barrier and reduce intracranial tumors representing a possible therapeutic option for metastatic brain lesions.
2023
25-nov-2022
Pubblicato
File in questo prodotto:
File Dimensione Formato  
EMBO Mol Med - 2022 - Dinami - MiR‐182‐3p targets TRF2 and impairs tumor growth of triple‐negative breast cancer (1).pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 5.08 MB
Formato Adobe PDF
5.08 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3037727
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact