Wavefront-marking X-ray imaging techniques use e.g., sandpaper or a grating to generate intensity fluctuations, and analyze their distortion by the sample in order to retrieve attenuation, phase-contrast, and dark-field information. Phase contrast yields an improved visibility of soft-tissue specimens, while dark-field reveals small-angle scatter from sub-resolution structures. Both have found many biomedical and engineering applications. The previously developed Unified Modulated Pattern Analysis (UMPA) model extracts these modalities from wavefront-marking data. We here present a new UMPA implementation, capable of rapidly processing large datasets and featuring capabilities to greatly extend the field of view. We also discuss possible artifacts and additional new features.
High-speed processing of X-ray wavefront marking data with the Unified Modulated Pattern Analysis (UMPA) model
De Marco, Fabio
;Savatović, Sara;Di Trapani, Vittorio;Margini, Marco;Lautizi, Ginevra;Thibault, Pierre
2023-01-01
Abstract
Wavefront-marking X-ray imaging techniques use e.g., sandpaper or a grating to generate intensity fluctuations, and analyze their distortion by the sample in order to retrieve attenuation, phase-contrast, and dark-field information. Phase contrast yields an improved visibility of soft-tissue specimens, while dark-field reveals small-angle scatter from sub-resolution structures. Both have found many biomedical and engineering applications. The previously developed Unified Modulated Pattern Analysis (UMPA) model extracts these modalities from wavefront-marking data. We here present a new UMPA implementation, capable of rapidly processing large datasets and featuring capabilities to greatly extend the field of view. We also discuss possible artifacts and additional new features.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.