We use the canonical trace on the non-commutative torus T-theta(2) to construct a Lie bi-algebra splitting of the algebra of its smooth functions. In the special case of rational parameter theta = M/N (the algebra is then generated by clock and shift matrices) this Lie bi-algebra is GL(N) = U(N) circle plus B(N), corresponding to unitary and upper triangular matrices. The Lie bi-algebra has a remnant in the classical limit N -> infinity: the elements of U(N) tend to real functions while B(N) tends to a space of complex analytic functions. The limit results into an infinite dimensional Lie bi-algebra for the smooth functions on the commutative torus.
Lie bi-algebras on the non-commutative torus
Giovanni Landi
;
2022-01-01
Abstract
We use the canonical trace on the non-commutative torus T-theta(2) to construct a Lie bi-algebra splitting of the algebra of its smooth functions. In the special case of rational parameter theta = M/N (the algebra is then generated by clock and shift matrices) this Lie bi-algebra is GL(N) = U(N) circle plus B(N), corresponding to unitary and upper triangular matrices. The Lie bi-algebra has a remnant in the classical limit N -> infinity: the elements of U(N) tend to real functions while B(N) tends to a space of complex analytic functions. The limit results into an infinite dimensional Lie bi-algebra for the smooth functions on the commutative torus.File | Dimensione | Formato | |
---|---|---|---|
2106.11704.pdf
Open Access dal 08/09/2023
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Copyright Editore
Dimensione
1.52 MB
Formato
Adobe PDF
|
1.52 MB | Adobe PDF | Visualizza/Apri |
2969531-2-29.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
6.62 MB
Formato
Adobe PDF
|
6.62 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.