Objective: To define a predictive Artificial Intelligence (AI) algorithm based on the integration of a set of biopsy-based microRNAs expression data and radiomic features to understand their potential impact in predicting clinical response (CR) to neoadjuvant radio-chemotherapy (nRCT). The identification of patients who would truly benefit from nRCT for Locally Advanced Rectal Cancer (LARC) could be crucial for an improvement in a tailored therapy. Methods: Forty patients with LARC were retrospectively analyzed. An MRI of the pelvis before and after nRCT was performed. In the diagnostic biopsy, the expression levels of 7 miRNAs were measured and correlated with the tumor response rate (TRG), assessed on the surgical sample. The accuracy of complete CR (cCR) prediction was compared for i) clinical predictors; ii) radiomic features; iii) miRNAs levels; and iv) combination of radiomics and miRNAs. Results: Clinical predictors showed the lowest accuracy. The best performing model was based on the integration of radiomic features with miR-145 expression level (AUC-ROC = 0.90). AI algorithm, based on radiomics features and the overexpression of miR-145, showed an association with the TRG class and demonstrated a significant impact on the outcome. Conclusion: The pre-treatment identification of responders/NON-responders to nRCT could address patients to a personalized strategy, such as total neoadjuvant therapy (TNT) for responders and upfront surgery for non-responders. The combination of radiomic features and miRNAs expression data from images and biopsy obtained through standard of care has the potential to accelerate the discovery of a noninvasive multimodal approach to predict the cCR after nRCT for LARC.
microRNAs combined to radiomic features as a predictor of complete clinical response after neoadjuvant radio-chemotherapy for locally advanced rectal cancer: a preliminary study
Losurdo, Pasquale
;Gandin, Ilaria;Belgrano, Manuel;Fiorese, Ilaria;Verardo, Roberto;Zanconati, Fabrizio;Cova, Maria Assunta;de Manzini, N
2023-01-01
Abstract
Objective: To define a predictive Artificial Intelligence (AI) algorithm based on the integration of a set of biopsy-based microRNAs expression data and radiomic features to understand their potential impact in predicting clinical response (CR) to neoadjuvant radio-chemotherapy (nRCT). The identification of patients who would truly benefit from nRCT for Locally Advanced Rectal Cancer (LARC) could be crucial for an improvement in a tailored therapy. Methods: Forty patients with LARC were retrospectively analyzed. An MRI of the pelvis before and after nRCT was performed. In the diagnostic biopsy, the expression levels of 7 miRNAs were measured and correlated with the tumor response rate (TRG), assessed on the surgical sample. The accuracy of complete CR (cCR) prediction was compared for i) clinical predictors; ii) radiomic features; iii) miRNAs levels; and iv) combination of radiomics and miRNAs. Results: Clinical predictors showed the lowest accuracy. The best performing model was based on the integration of radiomic features with miR-145 expression level (AUC-ROC = 0.90). AI algorithm, based on radiomics features and the overexpression of miR-145, showed an association with the TRG class and demonstrated a significant impact on the outcome. Conclusion: The pre-treatment identification of responders/NON-responders to nRCT could address patients to a personalized strategy, such as total neoadjuvant therapy (TNT) for responders and upfront surgery for non-responders. The combination of radiomic features and miRNAs expression data from images and biopsy obtained through standard of care has the potential to accelerate the discovery of a noninvasive multimodal approach to predict the cCR after nRCT for LARC.File | Dimensione | Formato | |
---|---|---|---|
s00464-022-09851-1.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
656.18 kB
Formato
Adobe PDF
|
656.18 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
s00464-022-09851-1-Post_print.pdf
Open Access dal 14/01/2024
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.