Goulden, Jackson and Vakil observed a polynomial structure underlying one-part double Hurwitz numbers, which enumerate branched covers of CP1 with prescribed ramification profile over ∞, a unique preimage over 0, and simple branching elsewhere. This led them to conjecture the existence of moduli spaces and tautological classes whose intersection theory produces an analogue of the celebrated ELSV formula for single Hurwitz numbers. In this paper, we present three formulas that express one-part double Hurwitz numbers as intersection numbers on certain moduli spaces. The first involves Hodge classes on moduli spaces of stable maps to classifying spaces; the second involves Chiodo classes on moduli spaces of spin curves; and the third involves tautological classes on moduli spaces of stable curves. We proceed to discuss the merits of these formulas against a list of desired properties enunciated by Goulden, Jackson and Vakil. Our formulas lead to non-trivial relations between tautological intersection numbers on moduli spaces of stable curves and hints at further structure underlying Chiodo classes. The paper concludes with generalisations of our results to the context of spin Hurwitz numbers.

On the Goulden-Jackson-Vakil conjecture for double Hurwitz numbers

Lewanski D
2022-01-01

Abstract

Goulden, Jackson and Vakil observed a polynomial structure underlying one-part double Hurwitz numbers, which enumerate branched covers of CP1 with prescribed ramification profile over ∞, a unique preimage over 0, and simple branching elsewhere. This led them to conjecture the existence of moduli spaces and tautological classes whose intersection theory produces an analogue of the celebrated ELSV formula for single Hurwitz numbers. In this paper, we present three formulas that express one-part double Hurwitz numbers as intersection numbers on certain moduli spaces. The first involves Hodge classes on moduli spaces of stable maps to classifying spaces; the second involves Chiodo classes on moduli spaces of spin curves; and the third involves tautological classes on moduli spaces of stable curves. We proceed to discuss the merits of these formulas against a list of desired properties enunciated by Goulden, Jackson and Vakil. Our formulas lead to non-trivial relations between tautological intersection numbers on moduli spaces of stable curves and hints at further structure underlying Chiodo classes. The paper concludes with generalisations of our results to the context of spin Hurwitz numbers.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0001870822001554-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 572.86 kB
Formato Adobe PDF
572.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
post print.pdf

Open Access dal 01/04/2024

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3047180
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact