We consider noncommutative principal bundles which are equivariant under a triangular Hopf algebra. We present explicit examples of infinite dimensional braided Lie and Hopf algebras of infinitesimal gauge transformations of bundles on noncommutative spheres. The braiding of these algebras is implemented by the triangular structure of the symmetry Hopf algebra. We present a systematic analysis of compatible *-structures, encompassing the quasitriangular case.

Braided Hopf Algebras and Gauge Transformations II: *-Structures and Examples

Giovanni Landi;Chiara Pagani
2023-01-01

Abstract

We consider noncommutative principal bundles which are equivariant under a triangular Hopf algebra. We present explicit examples of infinite dimensional braided Lie and Hopf algebras of infinitesimal gauge transformations of bundles on noncommutative spheres. The braiding of these algebras is implemented by the triangular structure of the symmetry Hopf algebra. We present a systematic analysis of compatible *-structures, encompassing the quasitriangular case.
File in questo prodotto:
File Dimensione Formato  
s11040-023-09454-9.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 710.91 kB
Formato Adobe PDF
710.91 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3050478
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact