The seismic vulnerability assessment of existing structures is a well-known challenging task, due to a combination of several aspects. The use of analytical or finite element (FE) numerical models can offer robust support in this analysis but necessitates the accurate calibration of geometrical and mechanical input, with related uncertainties. In this paper, attention is focused on the identification of dynamic parameters, based on modal numerical analysis, of a 50-year-old, reinforced concrete, elevated water tank (EWT) characterised by a reservoir with a truncated cone shape. The structure is located in a high seismic region of northern Italy and presently necessitates retrofit plans to preserve its functionality. Based on the limited available experimental evidence and technical drawings, major efforts are spent for the numerical prediction of fundamental vibration modes and frequencies of the structure, which represent a first key step for seismic analyses, under various water-filling levels. To this aim, four different FE numerical strategies able to include both structural features and possible fluid–structure interaction (FSI) effects are developed. By progressively increasing the computational cost (and expected the accuracy of the solutions), FE models based on added-mass (M0 model), spring-mass (M1-DM or M1-DS models), or acoustic (M2 model) strategies are taken into account and combined with increasing detailing in geometrical description of the structure. Results from parametric modal analyses are discussed for the case-study EWT, in terms of computational cost, possible numerical limitations, accuracy of predicted frequencies/modal shapes, sensitivity to water-filling levels and operational configurations, with the support of several pieces of experimental evidence and consolidated analytical formulations for fundamental frequency estimations.

Comparison of Numerical Strategies for Historic Elevated Water Tanks: Modal Analysis of a 50-Year-Old Structure in Italy

Bedon, Chiara
Membro del Collaboration Group
;
Amadio, Claudio
Membro del Collaboration Group
;
Fasan, Marco
Membro del Collaboration Group
;
Bomben, Luca
Membro del Collaboration Group
2023-01-01

Abstract

The seismic vulnerability assessment of existing structures is a well-known challenging task, due to a combination of several aspects. The use of analytical or finite element (FE) numerical models can offer robust support in this analysis but necessitates the accurate calibration of geometrical and mechanical input, with related uncertainties. In this paper, attention is focused on the identification of dynamic parameters, based on modal numerical analysis, of a 50-year-old, reinforced concrete, elevated water tank (EWT) characterised by a reservoir with a truncated cone shape. The structure is located in a high seismic region of northern Italy and presently necessitates retrofit plans to preserve its functionality. Based on the limited available experimental evidence and technical drawings, major efforts are spent for the numerical prediction of fundamental vibration modes and frequencies of the structure, which represent a first key step for seismic analyses, under various water-filling levels. To this aim, four different FE numerical strategies able to include both structural features and possible fluid–structure interaction (FSI) effects are developed. By progressively increasing the computational cost (and expected the accuracy of the solutions), FE models based on added-mass (M0 model), spring-mass (M1-DM or M1-DS models), or acoustic (M2 model) strategies are taken into account and combined with increasing detailing in geometrical description of the structure. Results from parametric modal analyses are discussed for the case-study EWT, in terms of computational cost, possible numerical limitations, accuracy of predicted frequencies/modal shapes, sensitivity to water-filling levels and operational configurations, with the support of several pieces of experimental evidence and consolidated analytical formulations for fundamental frequency estimations.
2023
mag-2023
Pubblicato
File in questo prodotto:
File Dimensione Formato  
buildings-13-01414-v3.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 7.4 MB
Formato Adobe PDF
7.4 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3051658
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact