Monolayer 1T’-WTe2 has been the first two-dimensional crystal where a quantum spin Hall phase was experimentally observed. In addition, recent experiments and theoretical modeling reported the presence of a robust excitonic insulating phase. While first-principles calculations with hybrid functionals and several measurements at low temperatures suggest the presence of a band gap of the order of 50 meV, experiments could confirm the presence of the helical edge states only up to 100 K. Here, we study with first-principle simulations the temperature effects on the electronic structure of monolayer 1T’-WTe2 and consider the contributions of both thermal expansion and electron-phonon coupling. First, we show that thermal expansion is weak but tends to increase the indirect band gap. Then, we calculate the effect of electron-phonon coupling on the band structure with nonperturbative methods and observe a small reduction of the band inversion with increasing temperature. Notably, the topological phase and the presence of a finite gap are found to be particularly robust to thermal effects up to and above room temperature.
Thermal robustness of the quantum spin Hall phase in monolayer WTe2
Antimo Marrazzo
2023-01-01
Abstract
Monolayer 1T’-WTe2 has been the first two-dimensional crystal where a quantum spin Hall phase was experimentally observed. In addition, recent experiments and theoretical modeling reported the presence of a robust excitonic insulating phase. While first-principles calculations with hybrid functionals and several measurements at low temperatures suggest the presence of a band gap of the order of 50 meV, experiments could confirm the presence of the helical edge states only up to 100 K. Here, we study with first-principle simulations the temperature effects on the electronic structure of monolayer 1T’-WTe2 and consider the contributions of both thermal expansion and electron-phonon coupling. First, we show that thermal expansion is weak but tends to increase the indirect band gap. Then, we calculate the effect of electron-phonon coupling on the band structure with nonperturbative methods and observe a small reduction of the band inversion with increasing temperature. Notably, the topological phase and the presence of a finite gap are found to be particularly robust to thermal effects up to and above room temperature.File | Dimensione | Formato | |
---|---|---|---|
PhysRevMaterials.7.L021201.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
923.3 kB
Formato
Adobe PDF
|
923.3 kB | Adobe PDF | Visualizza/Apri |
SM(1).pdf
accesso aperto
Descrizione: supplementary file
Tipologia:
Altro materiale allegato
Licenza:
Copyright Editore
Dimensione
238.85 kB
Formato
Adobe PDF
|
238.85 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.