Key messageStem photosynthesis seems to play an adaptive role for woody plants that prosper in hot and dry ecosystems.Stem photosynthesis is thought to be involved in tree resistance/resilience to water shortage. Recent studies have focused on the coordination between stem photosynthesis and hydraulics, but the generality of association of stem photosynthetic efficiency with species-specific adaptation to drought is still unclear. We quantified bark and wood chlorophyll a fluorescence (in terms of F-v/F-m) in current-year, 1-year and 2-year-old stems of several woody species harvested in diverse habitats. We ranked species in terms of relative drought tolerance on the basis of their vulnerability to xylem embolism (P-50), and compared stem photosynthetic efficiency of drought-tolerant vs drought-sensitive species. F-v/F-m values decreased with increasing stem age, and were generally higher for Angiosperms than Gymnosperms. F-v/F-m both at the bark and wood level was higher for drought-tolerant Angiosperms compared to drought-sensitive ones. Our results highlight the potential adaptive role of stem photosynthesis in drought-tolerant species, thriving under arid conditions likely leading to prolonged stomatal closure and halt of leaf-level carbon gain.

Stem photosynthetic efficiency across woody angiosperms and gymnosperms with contrasting drought tolerance

Natale, S
;
Petruzzellis, F;La Rocca, N;Nardini, A
2023-01-01

Abstract

Key messageStem photosynthesis seems to play an adaptive role for woody plants that prosper in hot and dry ecosystems.Stem photosynthesis is thought to be involved in tree resistance/resilience to water shortage. Recent studies have focused on the coordination between stem photosynthesis and hydraulics, but the generality of association of stem photosynthetic efficiency with species-specific adaptation to drought is still unclear. We quantified bark and wood chlorophyll a fluorescence (in terms of F-v/F-m) in current-year, 1-year and 2-year-old stems of several woody species harvested in diverse habitats. We ranked species in terms of relative drought tolerance on the basis of their vulnerability to xylem embolism (P-50), and compared stem photosynthetic efficiency of drought-tolerant vs drought-sensitive species. F-v/F-m values decreased with increasing stem age, and were generally higher for Angiosperms than Gymnosperms. F-v/F-m both at the bark and wood level was higher for drought-tolerant Angiosperms compared to drought-sensitive ones. Our results highlight the potential adaptive role of stem photosynthesis in drought-tolerant species, thriving under arid conditions likely leading to prolonged stomatal closure and halt of leaf-level carbon gain.
File in questo prodotto:
File Dimensione Formato  
s00468-023-02415-3.pdf

Accesso chiuso

Descrizione: suppl. file at link; https://link.springer.com/article/10.1007/s00468-023-02415-3
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
s00468-023-02415-3-Post_print.pdf

Open Access dal 19/05/2024

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3052939
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact