We report the detection of CO(6-5) and CO(7-6) and their underlying continua from the host galaxy of quasar J100758.264+211529.207 (Pōniuā'ena) at z=7.5419, obtained with the NOrthern Extended Millimeter Array (NOEMA). Pōniuā'ena belongs to the HYPerluminous quasars at the Epoch of ReionizatION (HYPERION) sample of 17 $z>6$ quasars selected to be powered by supermassive black holes (SMBH) which experienced the fastest mass growth in the first Gyr of the Universe. The one reported here is the highest-redshift measurement of the cold and dense molecular gas to date. The host galaxy is unresolved and the line luminosity implies a molecular reservoir of $\rm M(H_2)=(2.2\pm0.2)\times 10^{10}$ $\rm M_\odot$, assuming a CO spectral line energy distribution typical of high-redshift quasars and a conversion factor $\alpha=0.8$ $\rm M_{\odot} (K\,km \, s^{-1} \,pc^{2})^{-1} $. We model the cold dust spectral energy distribution (SED) to derive a dust mass of M$_{\rm dust} =(2.1\pm 0.7)\times 10^8$ $\rm M_\odot$, and thus a gas to dust ratio $\sim100$. Both the gas and dust mass are not dissimilar from the reservoir found for luminous quasars at $z\sim6$. We use the CO detection to derive an estimate of the cosmic mass density of $\rm H_2$, $\Omega_{H_2} \simeq 1.31 \times 10^{-5}$. This value is in line with the general trend suggested by literature estimates at $ z < 7 $ and agrees fairly well with the latest theoretical expectations of non-equilibrium molecular-chemistry cosmological simulations of cold gas at early times.
First constraints of dense molecular gas at z~7.5 from the quasar Pōniuā'ena
Umberto Maio;Roberta Tripodi;Manuela Bischetti;Valentina D'Odorico;
2023-01-01
Abstract
We report the detection of CO(6-5) and CO(7-6) and their underlying continua from the host galaxy of quasar J100758.264+211529.207 (Pōniuā'ena) at z=7.5419, obtained with the NOrthern Extended Millimeter Array (NOEMA). Pōniuā'ena belongs to the HYPerluminous quasars at the Epoch of ReionizatION (HYPERION) sample of 17 $z>6$ quasars selected to be powered by supermassive black holes (SMBH) which experienced the fastest mass growth in the first Gyr of the Universe. The one reported here is the highest-redshift measurement of the cold and dense molecular gas to date. The host galaxy is unresolved and the line luminosity implies a molecular reservoir of $\rm M(H_2)=(2.2\pm0.2)\times 10^{10}$ $\rm M_\odot$, assuming a CO spectral line energy distribution typical of high-redshift quasars and a conversion factor $\alpha=0.8$ $\rm M_{\odot} (K\,km \, s^{-1} \,pc^{2})^{-1} $. We model the cold dust spectral energy distribution (SED) to derive a dust mass of M$_{\rm dust} =(2.1\pm 0.7)\times 10^8$ $\rm M_\odot$, and thus a gas to dust ratio $\sim100$. Both the gas and dust mass are not dissimilar from the reservoir found for luminous quasars at $z\sim6$. We use the CO detection to derive an estimate of the cosmic mass density of $\rm H_2$, $\Omega_{H_2} \simeq 1.31 \times 10^{-5}$. This value is in line with the general trend suggested by literature estimates at $ z < 7 $ and agrees fairly well with the latest theoretical expectations of non-equilibrium molecular-chemistry cosmological simulations of cold gas at early times.File | Dimensione | Formato | |
---|---|---|---|
Feruglio_2023_ApJL_954_L10.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
885.82 kB
Formato
Adobe PDF
|
885.82 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.