We study the effects of the electromagnetic vacuum on the motion of a nonrelativistic electron. First we derive the equation of motion for the expectation value of the electron's position operator. We show how this equation has the same form as the classical Abraham-Lorentz equation but, at the same time, is free of the well-known runaway solution. Second, we study decoherence induced by vacuum fluctuations. We show that decoherence due to vacuum fluctuations that appears at the level of the reduced density matrix of the electron, obtained after tracing over the radiation field, does not correspond to actual irreversible loss of coherence.
Motion of an electron through vacuum fluctuations
Anirudh Gundhi
Membro del Collaboration Group
;Angelo BassiMembro del Collaboration Group
2023-01-01
Abstract
We study the effects of the electromagnetic vacuum on the motion of a nonrelativistic electron. First we derive the equation of motion for the expectation value of the electron's position operator. We show how this equation has the same form as the classical Abraham-Lorentz equation but, at the same time, is free of the well-known runaway solution. Second, we study decoherence induced by vacuum fluctuations. We show that decoherence due to vacuum fluctuations that appears at the level of the reduced density matrix of the electron, obtained after tracing over the radiation field, does not correspond to actual irreversible loss of coherence.File | Dimensione | Formato | |
---|---|---|---|
PhysRevA.107.062801.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
301.4 kB
Formato
Adobe PDF
|
301.4 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.