In the Gerbino illusion a regular but coincidentally occluded polygon appears distorted. Such a display represents a critical condition for amodal completion (AC), in which the smooth continuations of contour fragments—however small—conflict with their possible monotonic interpolation. Smoothness and monotonicity are considered the fundamental constraints of AC at the contour level. To account for the Gerbino illusion we contrasted two models derived from alternative AC frameworks: visual interpolation, based on the literal representation of contour fragments, vs. visual approximation, which tolerates a small misorientation of contour fragments, compatible with smoothness and monotonicity constraints. To measure the perceived misorientation of sides of coincidentally occluded angles we introduced a novel technique for analyzing data from a multiple probe adjustment task. An unsupervised cluster analysis of errors in extrapolation and tilt adjustments revealed that the distortion observed in the Gerbino illusion is consistent with visual approximation and, in particular, with the concatenation of misoriented and locally shrinked amodally completed angles. Implications of our technique and obtained results shed new light on visual completion processes.

Amodal completion of coincidentally occluded angles: a matter of visual approximation

Dissegna, Andrea;Gerbino, Walter
;
Fantoni, Carlo
2023-01-01

Abstract

In the Gerbino illusion a regular but coincidentally occluded polygon appears distorted. Such a display represents a critical condition for amodal completion (AC), in which the smooth continuations of contour fragments—however small—conflict with their possible monotonic interpolation. Smoothness and monotonicity are considered the fundamental constraints of AC at the contour level. To account for the Gerbino illusion we contrasted two models derived from alternative AC frameworks: visual interpolation, based on the literal representation of contour fragments, vs. visual approximation, which tolerates a small misorientation of contour fragments, compatible with smoothness and monotonicity constraints. To measure the perceived misorientation of sides of coincidentally occluded angles we introduced a novel technique for analyzing data from a multiple probe adjustment task. An unsupervised cluster analysis of errors in extrapolation and tilt adjustments revealed that the distortion observed in the Gerbino illusion is consistent with visual approximation and, in particular, with the concatenation of misoriented and locally shrinked amodally completed angles. Implications of our technique and obtained results shed new light on visual completion processes.
File in questo prodotto:
File Dimensione Formato  
fcogn-02-1216459.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF Visualizza/Apri
Presentation 1.pdf

accesso aperto

Descrizione: Suppl. mat.
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 356.78 kB
Formato Adobe PDF
356.78 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3059339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact