In this chapter, we survey the most significant applications of EML to robotics. We first highlight the salient characteristics of the field in terms of what can be optimized and with what aims and constraints. Then we survey the large literature concerning the optimization, by the means of evolutionary computation, of artificial neural networks, traditionally considered a form of machine learning, used for controlling the robots: for easing the comprehension, we categorize the various approaches along different axes, as, e.g., the robotic task, the representation of the solutions, the evolutionary algorithm being employed. We then survey the many usages of evolutionary computation for optimizing the morphology of the robots, including those that tackle the challenging task of optimizing the morphology and the controller at the same time. Finally, we discuss the reality gap problem that consists in a potential mismatch between the quality of solutions found in simulations and their quality observed in reality.

Evolutionary Machine Learning in Robotics

Medvet, Eric
;
Nadizar, Giorgia;Pigozzi, Federico;Salvato, Erica
2024-01-01

Abstract

In this chapter, we survey the most significant applications of EML to robotics. We first highlight the salient characteristics of the field in terms of what can be optimized and with what aims and constraints. Then we survey the large literature concerning the optimization, by the means of evolutionary computation, of artificial neural networks, traditionally considered a form of machine learning, used for controlling the robots: for easing the comprehension, we categorize the various approaches along different axes, as, e.g., the robotic task, the representation of the solutions, the evolutionary algorithm being employed. We then survey the many usages of evolutionary computation for optimizing the morphology of the robots, including those that tackle the challenging task of optimizing the morphology and the controller at the same time. Finally, we discuss the reality gap problem that consists in a potential mismatch between the quality of solutions found in simulations and their quality observed in reality.
2024
978-981-99-3813-1
978-981-99-3814-8
File in questo prodotto:
File Dimensione Formato  
2022_Book_EMLInRobotics.pdf

Open Access dal 03/11/2024

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Copyright Editore
Dimensione 4.78 MB
Formato Adobe PDF
4.78 MB Adobe PDF Visualizza/Apri
978-981-99-3814-8_23.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3062478
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact