We consider the inverse problem of determining, the possibly anisotropic, conductivity of a body \Omega ⊂Rn, n ≥3, by means of the so-called local Neumann-to-Dirichlet map on a curved portion \Sigma of its boundary ∂\Omega . Motivated by the uniqueness result for piecewise constant anisotropic conductivities proved in Inverse Problems 33 (2018), 125013, we provide a Hölder stability estimate on \Sigma when the conductivity is a-priori known to be a constant matrix near \Sigma .

Determining an anisotropic conductivity by boundary measurements: Stability at the boundary

Giovanni Alessandrini;Romina Gaburro
;
Eva Sincich
2024-01-01

Abstract

We consider the inverse problem of determining, the possibly anisotropic, conductivity of a body \Omega ⊂Rn, n ≥3, by means of the so-called local Neumann-to-Dirichlet map on a curved portion \Sigma of its boundary ∂\Omega . Motivated by the uniqueness result for piecewise constant anisotropic conductivities proved in Inverse Problems 33 (2018), 125013, we provide a Hölder stability estimate on \Sigma when the conductivity is a-priori known to be a constant matrix near \Sigma .
File in questo prodotto:
File Dimensione Formato  
2024_AGS_JDE.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 352.44 kB
Formato Adobe PDF
352.44 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3065318
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact