Speckle-based imaging (SBI) is a multi-modal X-ray imaging technique that gives access to absorption, phase-contrast, and dark-field signals from a single dataset. However, it is often difficult to disentangle the different signals from a single measurement. Having complementary data obtained by repeating the scan under slightly varied conditions (multiframe approach) can significantly enhance the accuracy of signal extraction and, consequently, improve the overall quality of the final reconstruction. In order to retrieve the different channels, SBI relies on a reference pattern, generated by the addition of a wavefront marker in the beam (i.e., a sandpaper or gratings). Here, we show how a continuous helical acquisition can extend the field of view (FOV) and speed up the acquisition while maintaining a multiframe approach for the signal retrieval of a test object.
Helical sample-stepping for faster speckle-based multi-modal tomography with the Unified Modulated Pattern Analysis (UMPA) model
Sara Savatović
;Fabio De Marco;Vittorio Di Trapani;Marco Margini;Ginevra Lautizi;Pierre Thibault
2023-01-01
Abstract
Speckle-based imaging (SBI) is a multi-modal X-ray imaging technique that gives access to absorption, phase-contrast, and dark-field signals from a single dataset. However, it is often difficult to disentangle the different signals from a single measurement. Having complementary data obtained by repeating the scan under slightly varied conditions (multiframe approach) can significantly enhance the accuracy of signal extraction and, consequently, improve the overall quality of the final reconstruction. In order to retrieve the different channels, SBI relies on a reference pattern, generated by the addition of a wavefront marker in the beam (i.e., a sandpaper or gratings). Here, we show how a continuous helical acquisition can extend the field of view (FOV) and speed up the acquisition while maintaining a multiframe approach for the signal retrieval of a test object.File | Dimensione | Formato | |
---|---|---|---|
Savatovic_2023_J._Inst._18_C11020.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
6.92 MB
Formato
Adobe PDF
|
6.92 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.