Robots with a modular body permit a wide range of physical configurations, which can be obtained by arranging the composing modules differently. While this freedom makes modular robots capable of performing different tasks, finding the optimal physical configuration for a given task is not trivial. In fact, practitioners attempt to jointly optimize the body and the controller of the robot for a given task, but the result is not always satisfactory. More broadly, it is not clear what factors make a physical configuration more or less successful. In this paper, we aim to fill this gap and verify if humans can be predictive with respect to the performance of an optimized controller for a given robot body. We consider the case of Voxel-based Soft Robots (VSRs), whose rich dynamic induced by the softness of the modules makes the body particularly relevant for the robot ability to perform a task. We instantiate a number of (simulated) VSR bodies, differing in shape and actuation mechanism, and let a panel of humans control them, by means of online interaction with the simulator, while performing the task of locomotion. We use the same bodies with controllers obtained with evolutionary optimization, for the same task. We compare the ranking of human- and optimized AI-based VSRs, finding them very similar. We believe that our results strengthen the hypothesis that intrinsic factors in the body of modular robots determine their success.

Human Control of Simulated Modular Soft Robots May Predict the Performance of Optimized AI-Based Controllers

Giulia Marchiori Pietrosanti;Giorgia Nadizar;Federico Pigozzi;Eric Medvet
2023-01-01

Abstract

Robots with a modular body permit a wide range of physical configurations, which can be obtained by arranging the composing modules differently. While this freedom makes modular robots capable of performing different tasks, finding the optimal physical configuration for a given task is not trivial. In fact, practitioners attempt to jointly optimize the body and the controller of the robot for a given task, but the result is not always satisfactory. More broadly, it is not clear what factors make a physical configuration more or less successful. In this paper, we aim to fill this gap and verify if humans can be predictive with respect to the performance of an optimized controller for a given robot body. We consider the case of Voxel-based Soft Robots (VSRs), whose rich dynamic induced by the softness of the modules makes the body particularly relevant for the robot ability to perform a task. We instantiate a number of (simulated) VSR bodies, differing in shape and actuation mechanism, and let a panel of humans control them, by means of online interaction with the simulator, while performing the task of locomotion. We use the same bodies with controllers obtained with evolutionary optimization, for the same task. We compare the ranking of human- and optimized AI-based VSRs, finding them very similar. We believe that our results strengthen the hypothesis that intrinsic factors in the body of modular robots determine their success.
2023
14-dic-2023
Pubblicato
https://ieeexplore.ieee.org/document/10359512
File in questo prodotto:
File Dimensione Formato  
Human_Control_of_Simulated_Modular_Soft_Robots_May_Predict_the_Performance_of_Optimized_AI-Based_Controllers.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 4.3 MB
Formato Adobe PDF
4.3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3066858
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact