We present a method which uses cuts in colour-colour and reduced proper motion-colour space to select white dwarfs without the recourse to spectroscopy while allowing an adjustable compromise between completeness and efficiency. Rather than just producing a list of white dwarf candidates, our method calculates a probability of being a white dwarf (P-WD) for any object with available multiband photometry and proper motion. We applied this method to all objects in the Sloan Digital Sky Survey (SDSS) Data Release 10 (DR10) photometric footprint and to a few selected sources in DR7 which did not have reliable photometry in DR9 or DR10. This application results in a sample of 61 969 DR10 and 3799 DR7 photometric sources with calculated PWD from which it is possible to select a sample of similar to 23 000 high-fidelity white dwarf candidates with T-eff greater than or similar to 7000 K and g <= 19. This sample contains over 14 000 high confidence white dwarfs candidates which have not yet received spectroscopic follow-up. These numbers show that, to date, the spectroscopic coverage of white dwarfs in the SDSS photometric footprint is, on average, only similar to 40 per cent complete. While we describe here in detail the application of our selection to the SDSS catalogue, the same method could easily be applied to other multicolour, large area surveys. We also publish a list of 8701 bright (g <= 19) white dwarfs with SDSS spectroscopy, of which 1781 are new identifications in DR9/DR10.

A photometric selection of white dwarf candidates in Sloan Digital Sky Survey Data Release 10

Nicola P. Gentile Fusillo
;
2015-01-01

Abstract

We present a method which uses cuts in colour-colour and reduced proper motion-colour space to select white dwarfs without the recourse to spectroscopy while allowing an adjustable compromise between completeness and efficiency. Rather than just producing a list of white dwarf candidates, our method calculates a probability of being a white dwarf (P-WD) for any object with available multiband photometry and proper motion. We applied this method to all objects in the Sloan Digital Sky Survey (SDSS) Data Release 10 (DR10) photometric footprint and to a few selected sources in DR7 which did not have reliable photometry in DR9 or DR10. This application results in a sample of 61 969 DR10 and 3799 DR7 photometric sources with calculated PWD from which it is possible to select a sample of similar to 23 000 high-fidelity white dwarf candidates with T-eff greater than or similar to 7000 K and g <= 19. This sample contains over 14 000 high confidence white dwarfs candidates which have not yet received spectroscopic follow-up. These numbers show that, to date, the spectroscopic coverage of white dwarfs in the SDSS photometric footprint is, on average, only similar to 40 per cent complete. While we describe here in detail the application of our selection to the SDSS catalogue, the same method could easily be applied to other multicolour, large area surveys. We also publish a list of 8701 bright (g <= 19) white dwarfs with SDSS spectroscopy, of which 1781 are new identifications in DR9/DR10.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3069738
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 63
social impact