In this paper we study a toy model of the Peskin problem that captures the motion of the full Peskin problem in the normal direction and discards the tangential elastic stretching contributions. This model takes the form of a fully nonlinear scalar contour equation. The Peskin problem is a fluid-structure interaction problem that describes the motion of an elastic rod immersed in an incompressible Stokes fluid. We prove global in time existence of the solution for initial data in the critical Lipschitz space. By using a new decomposition together with cancellation properties, pointwise methods allow us to obtain the desired estimates in the Lipschitz class. Moreover, we perform energy estimates in order to obtain that the solution lies in the space L2([0, T];H3/2) to satisfy the contour equation pointwise
Global Existence in the Lipschitz Class for the N-Peskin Problem
Scrobogna S.
2023-01-01
Abstract
In this paper we study a toy model of the Peskin problem that captures the motion of the full Peskin problem in the normal direction and discards the tangential elastic stretching contributions. This model takes the form of a fully nonlinear scalar contour equation. The Peskin problem is a fluid-structure interaction problem that describes the motion of an elastic rod immersed in an incompressible Stokes fluid. We prove global in time existence of the solution for initial data in the critical Lipschitz space. By using a new decomposition together with cancellation properties, pointwise methods allow us to obtain the desired estimates in the Lipschitz class. Moreover, we perform energy estimates in order to obtain that the solution lies in the space L2([0, T];H3/2) to satisfy the contour equation pointwiseFile | Dimensione | Formato | |
---|---|---|---|
9320.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
435.18 kB
Formato
Adobe PDF
|
435.18 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.