In this paper we study a toy model of the Peskin problem that captures the motion of the full Peskin problem in the normal direction and discards the tangential elastic stretching contributions. This model takes the form of a fully nonlinear scalar contour equation. The Peskin problem is a fluid-structure interaction problem that describes the motion of an elastic rod immersed in an incompressible Stokes fluid. We prove global in time existence of the solution for initial data in the critical Lipschitz space. By using a new decomposition together with cancellation properties, pointwise methods allow us to obtain the desired estimates in the Lipschitz class. Moreover, we perform energy estimates in order to obtain that the solution lies in the space L2([0, T];H3/2) to satisfy the contour equation pointwise

Global Existence in the Lipschitz Class for the N-Peskin Problem

Scrobogna S.
2023-01-01

Abstract

In this paper we study a toy model of the Peskin problem that captures the motion of the full Peskin problem in the normal direction and discards the tangential elastic stretching contributions. This model takes the form of a fully nonlinear scalar contour equation. The Peskin problem is a fluid-structure interaction problem that describes the motion of an elastic rod immersed in an incompressible Stokes fluid. We prove global in time existence of the solution for initial data in the critical Lipschitz space. By using a new decomposition together with cancellation properties, pointwise methods allow us to obtain the desired estimates in the Lipschitz class. Moreover, we perform energy estimates in order to obtain that the solution lies in the space L2([0, T];H3/2) to satisfy the contour equation pointwise
File in questo prodotto:
File Dimensione Formato  
9320.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 435.18 kB
Formato Adobe PDF
435.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
9320-Post_print.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 987.86 kB
Formato Adobe PDF
987.86 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3073022
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact