The latest progress in deep learning approaches has garnered significant attention across a variety of research fields. These techniques have revolutionized the way marine parameters are measured, enabling automated and remote data collection. This work centers on employing a deep learning model for the automated evaluation of tide and surge, aiming to deliver accurate results through the analysis of surveillance camera images. A mode of deep learning based on the Inception v3 structure was applied to predict tide and storm surges from surveillance cameras located in two different coastal areas of Italy. This approach is particularly advantageous in situations where traditional tide sensors are inaccessible or distant from the measurement point, especially during extreme events that require accurate surge measurements. The conducted experiments illustrate that the algorithm efficiently measures tide and surge remotely, achieving an accuracy surpassing 90% and maintaining a loss value below 1, evaluated through Categorical Cross-Entropy Loss functions. The findings highlight its potential to bridge the gap in data collection in challenging coastal environments, providing valuable insights for coastal management and hazard assessments. This research contributes to the emerging field of remote sensing and machine learning applications in environmental monitoring, paving the way for enhanced understanding and decision making in coastal regions.

Remote Measurement of Tide and Surge Using a Deep Learning System with Surveillance Camera Images

Giulia Casagrande
Writing – Review & Editing
;
Giorgio Fontolan
Writing – Review & Editing
;
Saverio Fracaros
Writing – Review & Editing
;
Sebastian Spadotto
Writing – Review & Editing
;
2024-01-01

Abstract

The latest progress in deep learning approaches has garnered significant attention across a variety of research fields. These techniques have revolutionized the way marine parameters are measured, enabling automated and remote data collection. This work centers on employing a deep learning model for the automated evaluation of tide and surge, aiming to deliver accurate results through the analysis of surveillance camera images. A mode of deep learning based on the Inception v3 structure was applied to predict tide and storm surges from surveillance cameras located in two different coastal areas of Italy. This approach is particularly advantageous in situations where traditional tide sensors are inaccessible or distant from the measurement point, especially during extreme events that require accurate surge measurements. The conducted experiments illustrate that the algorithm efficiently measures tide and surge remotely, achieving an accuracy surpassing 90% and maintaining a loss value below 1, evaluated through Categorical Cross-Entropy Loss functions. The findings highlight its potential to bridge the gap in data collection in challenging coastal environments, providing valuable insights for coastal management and hazard assessments. This research contributes to the emerging field of remote sensing and machine learning applications in environmental monitoring, paving the way for enhanced understanding and decision making in coastal regions.
2024
11-mag-2024
Pubblicato
File in questo prodotto:
File Dimensione Formato  
2024 Water-16-01365.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 6 MB
Formato Adobe PDF
6 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3074658
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact