The accuracy of an out-of-field dose from an Elekta Synergy accelerator calculated using the X-ray Voxel Monte Carlo (XVMC) dose algorithm in the Monaco treatment planning system (TPS) for both low-energy (6 MV) and high-energy (15 MV) photons at cardiac implantable electronic device (CIED) depths was investigated through a comparison between MCNPX simulated out-of-field doses and measured out-of-field doses using three high spatial and sensitive active detectors. In addition, total neutron equivalent dose and fluence at CIED depths of a 15-MV dose from an Elekta Synergy accelerator were calculated, and the corresponding CIED relative neutron damage was quantified. The results showed that for 6-MV photons, the XVMC dose algorithm in Monaco underestimated out-of-field doses in all off-axis distances (average errors: −17% at distances X < 10 cm from the field edge and −31% at distances between 10 < X ≤ 16 cm from the field edge), with an increasing magnitude of underestimation for high-energy (15 MV) photons (up to 11%). According to the results, an out-of-field photon dose at a shallower CIED depth of 1 cm was associated with greater statistical uncertainty in the dose estimate compared to a CIED depth of 2 cm and clinical depth of 10 cm. Our results showed that the relative neutron damage at a CIED depth range for 15 MV photon is 36% less than that reported for 18 MV photon in the literature.

Neutron and photon out-of-field doses at cardiac implantable electronic device (CIED) depths

Aslian H.
;
Longo F.
2021-01-01

Abstract

The accuracy of an out-of-field dose from an Elekta Synergy accelerator calculated using the X-ray Voxel Monte Carlo (XVMC) dose algorithm in the Monaco treatment planning system (TPS) for both low-energy (6 MV) and high-energy (15 MV) photons at cardiac implantable electronic device (CIED) depths was investigated through a comparison between MCNPX simulated out-of-field doses and measured out-of-field doses using three high spatial and sensitive active detectors. In addition, total neutron equivalent dose and fluence at CIED depths of a 15-MV dose from an Elekta Synergy accelerator were calculated, and the corresponding CIED relative neutron damage was quantified. The results showed that for 6-MV photons, the XVMC dose algorithm in Monaco underestimated out-of-field doses in all off-axis distances (average errors: −17% at distances X < 10 cm from the field edge and −31% at distances between 10 < X ≤ 16 cm from the field edge), with an increasing magnitude of underestimation for high-energy (15 MV) photons (up to 11%). According to the results, an out-of-field photon dose at a shallower CIED depth of 1 cm was associated with greater statistical uncertainty in the dose estimate compared to a CIED depth of 2 cm and clinical depth of 10 cm. Our results showed that the relative neutron damage at a CIED depth range for 15 MV photon is 36% less than that reported for 18 MV photon in the literature.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0969804321002955-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 5.43 MB
Formato Adobe PDF
5.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3075309
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact