Benznidazole (BNZ) serves as the primary drug for treating Chagas Disease and is listed in the WHO Model List of Essential Medicines for Children. Herein, a new child-friendly oral BNZ delivery platform is developed in the form of supramolecular eutectogels (EGs). EGs address BNZ’s poor oral bioavailability and provide a flexible twice-daily dose in stick-pack format. This green and sustainable formulation strategy relies on the gelation of drug-loaded Natural Deep Eutectic Solvents (NaDES) with xanthan gum (XG) and water. Specifically, choline chloride-based NaDES form stable and biocompatible 5 mg/mL BNZ-loaded EGs. Rheological and Low-field NMR investigations indicate that EGs are viscoelastic materials comprised of two co-existing regions in the XG network generated by different crosslink distributions between the biopolymer, NaDES and water. Remarkably, the shear modulus and relaxation spectrum of EGs remain unaffected by temperature variations. Upon dilution with simulated gastrointestinal fluids, EGs results in BNZ supersaturation, serving as the primary driving force for its absorption. Interestingly, after oral administration of EGs to rats, drug bioavailability increases by 2.6-fold, with a similar increase detected in their cerebrospinal fluid. The noteworthy correlation between in vivo results and in vitro release profiles confirms the efficacy of EGs in enhancing both peripheral and central BNZ oral bioavailability.

Supramolecular eutectogel as new oral paediatric delivery system to enhance benznidazole bioavailability

Abrami, Michela;Grassi, Mario;Passerini, Nadia;Perissutti, Beatrice;
2024-01-01

Abstract

Benznidazole (BNZ) serves as the primary drug for treating Chagas Disease and is listed in the WHO Model List of Essential Medicines for Children. Herein, a new child-friendly oral BNZ delivery platform is developed in the form of supramolecular eutectogels (EGs). EGs address BNZ’s poor oral bioavailability and provide a flexible twice-daily dose in stick-pack format. This green and sustainable formulation strategy relies on the gelation of drug-loaded Natural Deep Eutectic Solvents (NaDES) with xanthan gum (XG) and water. Specifically, choline chloride-based NaDES form stable and biocompatible 5 mg/mL BNZ-loaded EGs. Rheological and Low-field NMR investigations indicate that EGs are viscoelastic materials comprised of two co-existing regions in the XG network generated by different crosslink distributions between the biopolymer, NaDES and water. Remarkably, the shear modulus and relaxation spectrum of EGs remain unaffected by temperature variations. Upon dilution with simulated gastrointestinal fluids, EGs results in BNZ supersaturation, serving as the primary driving force for its absorption. Interestingly, after oral administration of EGs to rats, drug bioavailability increases by 2.6-fold, with a similar increase detected in their cerebrospinal fluid. The noteworthy correlation between in vivo results and in vitro release profiles confirms the efficacy of EGs in enhancing both peripheral and central BNZ oral bioavailability.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378517324006513-main (1).pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.41 MB
Formato Adobe PDF
3.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3081180
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact