We present a versatile method for full-field x-ray scattering tensor tomography that is based on energy conservation and is applicable to data obtained using different wavefront modulators. Using this algorithm, we pave the way for speckle-based tensor tomography. The proposed model relies on a mathematical approach that allows tuning spatial resolution and signal sensitivity. We present the application of the algorithm to three different imaging modalities and demonstrate its potential for applications of x-ray directional dark-field imaging.

Universal reconstruction method for x-ray scattering tensor tomography based on wavefront modulation

Lautizi G.
Primo
;
De Marco F.;Di Trapani V.;Thibault P.;
2024-01-01

Abstract

We present a versatile method for full-field x-ray scattering tensor tomography that is based on energy conservation and is applicable to data obtained using different wavefront modulators. Using this algorithm, we pave the way for speckle-based tensor tomography. The proposed model relies on a mathematical approach that allows tuning spatial resolution and signal sensitivity. We present the application of the algorithm to three different imaging modalities and demonstrate its potential for applications of x-ray directional dark-field imaging.
2024
Pubblicato
File in questo prodotto:
File Dimensione Formato  
PhysRevApplied.22.024031.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3091338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact