: Loop Gain (LG), a concept borrowed from engineering used to describe the stability of electrical circuits under negative feedback, has emerged as a crucial pathophysiological trait in sleep respiratory disorders. In simple terms, LG measures how the respiratory control system reacts to changes in breathing. A high LG suggests that minor disturbances in breathing prompt exaggerated responses, potentially leading to instability and oscillations in respiratory patterns. Conversely, a low LG implies that the system responds more gently to disturbances, resulting in stable and well-regulated breathing. However, understanding the concept of loop gain presents challenges due to its dynamic nature across various sleep respiratory disorders, sleep stages, positions, and interactions with other pathophysiological traits. Recent efforts have aimed to identify a non-invasive method for assessing LG, with some evidence suggesting that information regarding pathophysiological traits can be extracted from polysomnography. There exists a clinical imperative for physician to unravel the intricacies of LG when managing Obstructive Sleep Apnea (OSA) patients, because LG abnormalities delineate a distinct pathophysiological phenotype of OSA. Specifically, certain patients exhibit a high LG as the primary factor driving sleep apnea, influencing treatment outcomes. For instance, individuals with high LG may respond differently to therapies such as continuous positive airway pressure (CPAP) or oral appliances compared to those with normal LG, or they can be treated with specific drugs or combination therapies. Thus, understanding LG becomes paramount for precise assessment of OSA patients and is fundamental for optimizing a personalized and effective treatment approach.
Deciphering loop gain complexity: a primer for understanding a pathophysiological trait of obstructive sleep apnea patients
Antonaglia, Caterina
Primo
;Citton, Gloria Maria;Salton, Francesco;Ruaro, Barbara;Confalonieri, Paola;Confalonieri, Marco
2024-01-01
Abstract
: Loop Gain (LG), a concept borrowed from engineering used to describe the stability of electrical circuits under negative feedback, has emerged as a crucial pathophysiological trait in sleep respiratory disorders. In simple terms, LG measures how the respiratory control system reacts to changes in breathing. A high LG suggests that minor disturbances in breathing prompt exaggerated responses, potentially leading to instability and oscillations in respiratory patterns. Conversely, a low LG implies that the system responds more gently to disturbances, resulting in stable and well-regulated breathing. However, understanding the concept of loop gain presents challenges due to its dynamic nature across various sleep respiratory disorders, sleep stages, positions, and interactions with other pathophysiological traits. Recent efforts have aimed to identify a non-invasive method for assessing LG, with some evidence suggesting that information regarding pathophysiological traits can be extracted from polysomnography. There exists a clinical imperative for physician to unravel the intricacies of LG when managing Obstructive Sleep Apnea (OSA) patients, because LG abnormalities delineate a distinct pathophysiological phenotype of OSA. Specifically, certain patients exhibit a high LG as the primary factor driving sleep apnea, influencing treatment outcomes. For instance, individuals with high LG may respond differently to therapies such as continuous positive airway pressure (CPAP) or oral appliances compared to those with normal LG, or they can be treated with specific drugs or combination therapies. Thus, understanding LG becomes paramount for precise assessment of OSA patients and is fundamental for optimizing a personalized and effective treatment approach.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.