The problem of traversability of soft terrains is hard to solve due to both the inherent modeling complexity and the related computational cost. In this work a surrogate model is used to describe the behavior of soft soil, thus avoiding explicitly simulating it.We leverage machine learning to train a model on real-world data acquired with the “Archimede” robotic platform in DLR’s Moon-Mars test area in Oberpfaffenhofen, Germany. The model is tested using the Gazebo simulation environment by injecting virtual forces that mimic the effect of drift. Results show that the surrogate model shows promise, but showing also noticeable variability, possibly ascribable to the early stage of the model and training dataset.

Leveraging Machine Learning for Terrain Traversability in Mobile Robotics

Cottiga, Simone
Primo
;
Bonin, Lorenzo
Secondo
;
Giberna, Marco;Caruso, Matteo;Scalera, Lorenzo;De Lorenzo, Andrea
Penultimo
;
Seriani, Stefano
Ultimo
2024-01-01

Abstract

The problem of traversability of soft terrains is hard to solve due to both the inherent modeling complexity and the related computational cost. In this work a surrogate model is used to describe the behavior of soft soil, thus avoiding explicitly simulating it.We leverage machine learning to train a model on real-world data acquired with the “Archimede” robotic platform in DLR’s Moon-Mars test area in Oberpfaffenhofen, Germany. The model is tested using the Gazebo simulation environment by injecting virtual forces that mimic the effect of drift. Results show that the surrogate model shows promise, but showing also noticeable variability, possibly ascribable to the early stage of the model and training dataset.
2024
9783031673825
9783031673832
9783031673856
File in questo prodotto:
File Dimensione Formato  
Leveraging Machine Learning for Terrain Traversability in Mobile Robotics-MechanismsAndMachineScience.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3093658
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact