We search for the rare decay B+→K+νν¯ in a 362 fb-1 sample of electron-positron collisions at the δ (4S) resonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanying B meson in δ (4S)→BB¯ events to suppress background from other decays of the signal B candidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanying B meson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for the B+→K+νν¯ branching fraction of [2.7±0.5(stat)±0.5(syst)]×10-5 and [1.1-0.8+0.9(stat)-0.5+0.8(syst)]×10-5, respectively. Combining the results, we determine the branching fraction of the decay B+→K+νν¯ to be [2.3±0.5(stat)-0.4+0.5(syst)]×10-5, providing the first evidence for this decay at 3.5 standard deviations. The combined result is 2.7 standard deviations above the standard model expectation.

Evidence for B+ →k+ν ν ¯ decays

Dorigo, M.;Gabrielli, A.;Ganiev, E.;Ghosh, D.;Manfredi, R.;Mantovano, M.;Merola, M.;Raiz, S.;Vitale, L.;
2024-01-01

Abstract

We search for the rare decay B+→K+νν¯ in a 362 fb-1 sample of electron-positron collisions at the δ (4S) resonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanying B meson in δ (4S)→BB¯ events to suppress background from other decays of the signal B candidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanying B meson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for the B+→K+νν¯ branching fraction of [2.7±0.5(stat)±0.5(syst)]×10-5 and [1.1-0.8+0.9(stat)-0.5+0.8(syst)]×10-5, respectively. Combining the results, we determine the branching fraction of the decay B+→K+νν¯ to be [2.3±0.5(stat)-0.4+0.5(syst)]×10-5, providing the first evidence for this decay at 3.5 standard deviations. The combined result is 2.7 standard deviations above the standard model expectation.
File in questo prodotto:
File Dimensione Formato  
PhysRevD.109.112006-compresso.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF Visualizza/Apri
CORRECTED_B2Knunu_supplemental_material_proofs.pdf

accesso aperto

Descrizione: Supporting material
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3097758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 7
social impact