We explore nonequilibrium features of certain operator algebras which appear in quantum gravity. The algebra of observables in a black hole background is a Type II∞ von Neumann algebra. We discuss how this algebra can be coupled to the algebra of observable of an infinite reservoir within the canonical ensemble, aiming to induce nonequilibrium dynamics. The resulting dynamics can lead the system towards a nonequilibrium steady state which can be characterized through modular theory. Within this framework we address the definition of entropy production and its relationship to relative entropy, alongside exploring other applications
On the nonequilibrium dynamics of gravitational algebras
Cirafici M.
Primo
2024-01-01
Abstract
We explore nonequilibrium features of certain operator algebras which appear in quantum gravity. The algebra of observables in a black hole background is a Type II∞ von Neumann algebra. We discuss how this algebra can be coupled to the algebra of observable of an infinite reservoir within the canonical ensemble, aiming to induce nonequilibrium dynamics. The resulting dynamics can lead the system towards a nonequilibrium steady state which can be characterized through modular theory. Within this framework we address the definition of entropy production and its relationship to relative entropy, alongside exploring other applicationsFile | Dimensione | Formato | |
---|---|---|---|
Cirafici_2024_Class._Quantum_Grav._41_235006.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
503.26 kB
Formato
Adobe PDF
|
503.26 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.