In this paper, we determine the maximum h_max and the minimum h_min of the Hilbert vectors of Perazzo algebras A_F, where F is a Perazzo polynomial of degree d in n+m+1 variables. These algebras always fail the Strong Lefschetz Property. We determine the integers n, m, d such that h_max (resp. h_min) is unimodal, and we prove that A_F always fails the Weak Lefschetz Property if its Hilbert vector is maximum, while it satisfies the Weak Lefschetz Property if it is minimum, unimodal, and satisfies an additional mild condition. We determine the minimal free resolution of Perazzo algebras associated to Perazzo threefolds in P^4 with minimum Hilbert vectors. Finally we pose some open problems in this context.

Perazzo n-folds and the weak Lefschetz property

Emilia Mezzetti
Primo
;
2024-01-01

Abstract

In this paper, we determine the maximum h_max and the minimum h_min of the Hilbert vectors of Perazzo algebras A_F, where F is a Perazzo polynomial of degree d in n+m+1 variables. These algebras always fail the Strong Lefschetz Property. We determine the integers n, m, d such that h_max (resp. h_min) is unimodal, and we prove that A_F always fails the Weak Lefschetz Property if its Hilbert vector is maximum, while it satisfies the Weak Lefschetz Property if it is minimum, unimodal, and satisfies an additional mild condition. We determine the minimal free resolution of Perazzo algebras associated to Perazzo threefolds in P^4 with minimum Hilbert vectors. Finally we pose some open problems in this context.
File in questo prodotto:
File Dimensione Formato  
Mezzetti_et_al-2024-Rendiconti_del_Circolo_Matematico_di_Palermo_Series_2.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 359.52 kB
Formato Adobe PDF
359.52 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3099498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact