In this work, we elucidate the electronic charge redistributions that occur within the cyanuric acid (CA) and melamine (M) molecules upon formation of the triple H-bond between the imide group of CA and the diaminopyridine group of M. To achieve this, we investigated 2D H-bonded assemblies of M, CA and CA*M grown on the Au(111) surface, using X-ray photoemission (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopies. Compared to the homomolecular networks, the spectra of the mixed sample reveal core level shifts in opposite directions for CA and M, indicating a nearly complementary charge accumulation on the CA molecule and a charge depletion on the M molecule. These findings were further confirmed by theoretical simulation of the ionization potentials (IPs), which were computed using unsupported models of the H-bonded networks. A natural bond orbital (NBO) analysis performed on the three systems helped to rationalize the net charge transfer form M to CA. Finally, we observed that intramolecular interactions (electron delocalization effects) contribute progressively to the charge redistributions inside the two molecules when going from the homomolecular to the heteromolecular networks.

Inter‐ and intra‐molecular charge redistributions in H‐bonded Cyanuric Acid*Melamine (CA*M) networks: insight from core level spectroscopy and natural bond orbital analysis

Toffoli, Daniele
Primo
;
Costantini, Roberto;Bernes, Elisa;Balducci, Gabriele;Fronzoni, Giovanna;Cossaro, Albano;Lanzilotto, Valeria
Ultimo
2025-01-01

Abstract

In this work, we elucidate the electronic charge redistributions that occur within the cyanuric acid (CA) and melamine (M) molecules upon formation of the triple H-bond between the imide group of CA and the diaminopyridine group of M. To achieve this, we investigated 2D H-bonded assemblies of M, CA and CA*M grown on the Au(111) surface, using X-ray photoemission (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopies. Compared to the homomolecular networks, the spectra of the mixed sample reveal core level shifts in opposite directions for CA and M, indicating a nearly complementary charge accumulation on the CA molecule and a charge depletion on the M molecule. These findings were further confirmed by theoretical simulation of the ionization potentials (IPs), which were computed using unsupported models of the H-bonded networks. A natural bond orbital (NBO) analysis performed on the three systems helped to rationalize the net charge transfer form M to CA. Finally, we observed that intramolecular interactions (electron delocalization effects) contribute progressively to the charge redistributions inside the two molecules when going from the homomolecular to the heteromolecular networks.
File in questo prodotto:
File Dimensione Formato  
Chemistry A European J - 2024 - Toffoli - Inter‐ and Intra‐Molecular Charge Redistributions in H‐Bonded Cyanuric Acid.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.1 MB
Formato Adobe PDF
2.1 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3100482
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact