Exploring the behavior of complex industrial problems might become burdensome, especially in high-dimensional design spaces. Reduced Order Models (ROMs) aim to minimize the computational effort needed to study different design choices by exploiting already available data. In this work, we propose a methodology where the full-order solution is replaced with a Proper Orthogonal Decomposition based ROM, enhanced by a multi-fidelity surrogate model. Multi-fidelity approaches allow to exploit heterogeneous information sources, and consequently reduce the cost of creating the training data needed to build the ROM. To explore the multi-fidelity ROM capabilities, we present and discuss results and challenges for an automotive aerodynamic application, based on a geometric morphing of the DrivAer test case with multi-fidelity fluid-dynamics simulations.

Integration of multi-fidelity methods in parametrized non-intrusive reduced order models for industrial applications

Dicech, Fausto
Primo
;
Parussini, Lucia;Spagnolo, Anna;
2025-01-01

Abstract

Exploring the behavior of complex industrial problems might become burdensome, especially in high-dimensional design spaces. Reduced Order Models (ROMs) aim to minimize the computational effort needed to study different design choices by exploiting already available data. In this work, we propose a methodology where the full-order solution is replaced with a Proper Orthogonal Decomposition based ROM, enhanced by a multi-fidelity surrogate model. Multi-fidelity approaches allow to exploit heterogeneous information sources, and consequently reduce the cost of creating the training data needed to build the ROM. To explore the multi-fidelity ROM capabilities, we present and discuss results and challenges for an automotive aerodynamic application, based on a geometric morphing of the DrivAer test case with multi-fidelity fluid-dynamics simulations.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1877750324003041-main.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.75 MB
Formato Adobe PDF
3.75 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3102518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact