We provide a new version of the Poincaré–Birkhoff theorem for possibly multivalued successor maps associated with planar non-autonomous Hamiltonian systems. As an application, we prove the existence of periodic and subharmonic solutions of the scalar second order equation x¨+λg(t,x)=0, for λ>0 sufficiently small, with g(t, x) having a superlinear growth at infinity, without requiring the existence of an equilibrium point.

A Poincaré–Birkhoff theorem for multivalued successor maps with applications to periodic superlinear Hamiltonian systems

Fonda A.
Secondo
;
Sfecci A.
Ultimo
2024-01-01

Abstract

We provide a new version of the Poincaré–Birkhoff theorem for possibly multivalued successor maps associated with planar non-autonomous Hamiltonian systems. As an application, we prove the existence of periodic and subharmonic solutions of the scalar second order equation x¨+λg(t,x)=0, for λ>0 sufficiently small, with g(t, x) having a superlinear growth at infinity, without requiring the existence of an equilibrium point.
File in questo prodotto:
File Dimensione Formato  
s11784-024-01128-5.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 570.48 kB
Formato Adobe PDF
570.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3102907
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact