We provide a new version of the Poincaré–Birkhoff theorem for possibly multivalued successor maps associated with planar non-autonomous Hamiltonian systems. As an application, we prove the existence of periodic and subharmonic solutions of the scalar second order equation x¨+λg(t,x)=0, for λ>0 sufficiently small, with g(t, x) having a superlinear growth at infinity, without requiring the existence of an equilibrium point.
A Poincaré–Birkhoff theorem for multivalued successor maps with applications to periodic superlinear Hamiltonian systems
Fonda A.Secondo
;Sfecci A.Ultimo
2024-01-01
Abstract
We provide a new version of the Poincaré–Birkhoff theorem for possibly multivalued successor maps associated with planar non-autonomous Hamiltonian systems. As an application, we prove the existence of periodic and subharmonic solutions of the scalar second order equation x¨+λg(t,x)=0, for λ>0 sufficiently small, with g(t, x) having a superlinear growth at infinity, without requiring the existence of an equilibrium point.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s11784-024-01128-5.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
570.48 kB
Formato
Adobe PDF
|
570.48 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.