Quantum secure direct communication (QSDC) is an evolving quantum communication framework based on transmitting secure information directly through a quantum channel, without relying on key-based encryption such as in quantum key distribution (QKD). Optical QSDC protocols, utilizing discrete and continuous variable encodings, show great promise for future technological applications. We present the first table-top continuous-variable QSDC proof of principle, analyzing its implementation and comparing the use of coherent against squeezed light sources. A simple beam-splitter attack is analyzed by using Wyner wiretap channel theory. Our study illustrates the advantage of squeezed states over coherent ones for enhanced security and reliable communication in lossy and noisy channels. Our practical implementation, utilizing mature telecom components, could foster secure quantum metropolitan networks compatible with advanced multiplexing systems.

Experimental direct quantum communication with squeezed states

Sayedehfaezeh Mousavi
Secondo
;
Francesco Scazza;Angelo Bassi;Matteo Paris;Alessandro Zavatta
2025-01-01

Abstract

Quantum secure direct communication (QSDC) is an evolving quantum communication framework based on transmitting secure information directly through a quantum channel, without relying on key-based encryption such as in quantum key distribution (QKD). Optical QSDC protocols, utilizing discrete and continuous variable encodings, show great promise for future technological applications. We present the first table-top continuous-variable QSDC proof of principle, analyzing its implementation and comparing the use of coherent against squeezed light sources. A simple beam-splitter attack is analyzed by using Wyner wiretap channel theory. Our study illustrates the advantage of squeezed states over coherent ones for enhanced security and reliable communication in lossy and noisy channels. Our practical implementation, utilizing mature telecom components, could foster secure quantum metropolitan networks compatible with advanced multiplexing systems.
File in questo prodotto:
File Dimensione Formato  
oe-33-14-28917 (1).pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.9 MB
Formato Adobe PDF
3.9 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3113703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact