Separating how surface and subsurface species affect catalytic function is a challenging task in heterogeneous catalysis, particularly when deposition and segregation take place at reaction conditions. Here, we report on an operando approach to establish surface/subsurface/function correlations. Using temperature modulations we oscillate carbon deposition and segregation over a Pd catalyst. Catalytic composition and function are monitored during methane oxidation showing that the surface coverage of carbon drives partial oxidation to CO, while subsurface carbon controls the overall methane turnover. Also, we show that a carbon traffic jam in the subsurface leads to a shifting selectivity from H2 to H2O formation, highlighting the importance of the catalyst subsurface for the catalytic reaction.
Carbon subsurface traffic jam as driver for methane oxidation activity and selectivity on palladium surfaces
Alessandro Namar;
2025-01-01
Abstract
Separating how surface and subsurface species affect catalytic function is a challenging task in heterogeneous catalysis, particularly when deposition and segregation take place at reaction conditions. Here, we report on an operando approach to establish surface/subsurface/function correlations. Using temperature modulations we oscillate carbon deposition and segregation over a Pd catalyst. Catalytic composition and function are monitored during methane oxidation showing that the surface coverage of carbon drives partial oxidation to CO, while subsurface carbon controls the overall methane turnover. Also, we show that a carbon traffic jam in the subsurface leads to a shifting selectivity from H2 to H2O formation, highlighting the importance of the catalyst subsurface for the catalytic reaction.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


