: We present an efficient strategy for on-surface engineering of organic metal-free supramolecular complexes with long-term spin protection. By vacuum deposition of azafullerene (C59N•) monomers on a pre-deposited template layer of [10]cycloparaphenylene ([10]CPP) nanohoops on Au(111) surface we exploit the molecular shape matching between the C59N• and [10]CPP for the azafullerene encapsulation with nanohoops in a guest-host complexation geometry. C59N•⊂[10]CPP supramolecular complexes self-assemble into an extended two-dimensional hexagonal lattice yielding a high density network of stable spin-1/2 radicals. We find compelling evidence for electronic coupling between the guest C59N• and the host [10]CPP in supramolecular species. At the same time, [10]CPP effectively protects the radical state of encapsulated azafullerenes against dimerization and inhibits C59N• coupling to the Au substrate. Azafullerene encapsulation by nanohoops represents a viable realization of molecular spin protection while simultaneously demonstrating exceptional self-assembling properties by which large-scale 2D architectures of molecular spins can be realized.

Engineering 2D spin networks by on-surface encapsulation of azafullerene radicals in nanotemplates

Kladnik G.;Tagmatarchis N.;Morgante A.;Cvetko D.
2025-01-01

Abstract

: We present an efficient strategy for on-surface engineering of organic metal-free supramolecular complexes with long-term spin protection. By vacuum deposition of azafullerene (C59N•) monomers on a pre-deposited template layer of [10]cycloparaphenylene ([10]CPP) nanohoops on Au(111) surface we exploit the molecular shape matching between the C59N• and [10]CPP for the azafullerene encapsulation with nanohoops in a guest-host complexation geometry. C59N•⊂[10]CPP supramolecular complexes self-assemble into an extended two-dimensional hexagonal lattice yielding a high density network of stable spin-1/2 radicals. We find compelling evidence for electronic coupling between the guest C59N• and the host [10]CPP in supramolecular species. At the same time, [10]CPP effectively protects the radical state of encapsulated azafullerenes against dimerization and inhibits C59N• coupling to the Au substrate. Azafullerene encapsulation by nanohoops represents a viable realization of molecular spin protection while simultaneously demonstrating exceptional self-assembling properties by which large-scale 2D architectures of molecular spins can be realized.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3118140
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact