The human cathelicidin LL-37 is a multifunctional host defense peptide with immunomodulatory and antimicrobial roles. It kills bacteria primarily by altering membrane barrier properties, although the exact sequence of events leading to cell lysis has not yet been completely elucidated. Random insertion mutagenesis allowed isolation of Escherichia coli mutants with altered susceptibility to LL-37, pointing to factors potentially relevant to its activity. Among these, inactivation of the waaY gene, encoding a kinase responsible for heptose II phosphorylation in the LPS inner core, leads to a phenotype with decreased susceptibility to LL-37, stemming from a reduced amount of peptide binding to the surface of the cells, and a diminished capacity to lyse membranes. This points to a specific role of the LPS inner core in guiding LL-37 to the surface of Gram-negative bacteria. Although electrostatic interactions are clearly relevant, the susceptibility of the waaY mutant to other cationic helical cathelicidins was unaffected, indicating that particular structural features or LL-37 play a role in this interaction.
Lipopolysaccharide phosphorylation by the WaaY kinase affects the susceptibility of Escherichia coli to the human antimicrobial peptide LL-37
BOCIEK, KAROL;FERLUGA, Sara;MARDIROSSIAN, MARIO;BENINCASA, MONICA;TOSSI, ALESSANDRO;GENNARO, RENATO;SCOCCHI, MARCO
2015-01-01
Abstract
The human cathelicidin LL-37 is a multifunctional host defense peptide with immunomodulatory and antimicrobial roles. It kills bacteria primarily by altering membrane barrier properties, although the exact sequence of events leading to cell lysis has not yet been completely elucidated. Random insertion mutagenesis allowed isolation of Escherichia coli mutants with altered susceptibility to LL-37, pointing to factors potentially relevant to its activity. Among these, inactivation of the waaY gene, encoding a kinase responsible for heptose II phosphorylation in the LPS inner core, leads to a phenotype with decreased susceptibility to LL-37, stemming from a reduced amount of peptide binding to the surface of the cells, and a diminished capacity to lyse membranes. This points to a specific role of the LPS inner core in guiding LL-37 to the surface of Gram-negative bacteria. Although electrostatic interactions are clearly relevant, the susceptibility of the waaY mutant to other cationic helical cathelicidins was unaffected, indicating that particular structural features or LL-37 play a role in this interaction.File | Dimensione | Formato | |
---|---|---|---|
Lipopolysaccharide phosphorylation by the WaaY kinase affects the susceptibility of Escherichia coli to the human antimicrobial peptide LL-37.pdf
Accesso chiuso
Descrizione: pdf editoriale
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
6.93 MB
Formato
Adobe PDF
|
6.93 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.