The seasonal differences of the polycyclic aromatic hydrocarbons (PAHs) content in lichen transplants were investigated in an area of ca. 40 square kilometers in NE Italy characterized by different land use. Two sets of samples of the epiphytic lichen Pseudevernia furfuracea were collected in a pristine area of the Carnic Alps and transplanted to 40 exposure sites for a period of two months, respectively in late winter and in summer. Results revealed a pronounced difference between the two seasons in terms of PAH content and distribution patterns. After the summer exposure the PAH concentrations in the transplants were more than one order of magnitude lower than after the winter exposure (ranging from 48.22 to 272.73 ng g−1 dw and from 289.73 to 1575.85 ng g−1 dw in the summer and winter samples respectively). Also the main emission sources changed, mostly due to the drastic reduction in the emissions by wood burning for domestic heating and to the different meteorological conditions. In summer PAHs degradation was enhanced by intense UV radiation, high temperatures, and presence of ozone. The implications of these findings for the biomonitoring of PAHs pollution are addressed.
Titolo: | Seasonal variations of PAHs content and distribution patterns in a mixed land use area: A case study in NE Italy with the transplanted lichen Pseudevernia furfuracea |
Autori: | |
Data di pubblicazione: | 2015 |
Rivista: | |
Abstract: | The seasonal differences of the polycyclic aromatic hydrocarbons (PAHs) content in lichen transplants were investigated in an area of ca. 40 square kilometers in NE Italy characterized by different land use. Two sets of samples of the epiphytic lichen Pseudevernia furfuracea were collected in a pristine area of the Carnic Alps and transplanted to 40 exposure sites for a period of two months, respectively in late winter and in summer. Results revealed a pronounced difference between the two seasons in terms of PAH content and distribution patterns. After the summer exposure the PAH concentrations in the transplants were more than one order of magnitude lower than after the winter exposure (ranging from 48.22 to 272.73 ng g−1 dw and from 289.73 to 1575.85 ng g−1 dw in the summer and winter samples respectively). Also the main emission sources changed, mostly due to the drastic reduction in the emissions by wood burning for domestic heating and to the different meteorological conditions. In summer PAHs degradation was enhanced by intense UV radiation, high temperatures, and presence of ozone. The implications of these findings for the biomonitoring of PAHs pollution are addressed. |
Handle: | http://hdl.handle.net/11368/2869780 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.atmosenv.2015.04.067 |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
AE 2015 kodnik.pdf | PDF versione editoriale | Documento in Versione Editoriale | Digital Rights Management non definito | Administrator Richiedi una copia |