Drought-induced xylem embolism is a serious threat to plant survival under future climate scenarios. Hence, accurate quantification of species-specific vulnerability to xylem embolism is a key to predict the impact of climate change on vegetation. Low-cost hydraulic measurements of embolism rate have been suggested to be prone to artefacts, thus requiring validation by direct visualization of the functional status of xylem conduits using nondestructive imaging techniques, such as X-ray microtomography (microCT). We measured the percentage loss of conductance (PLC) of excised stems of Laurus nobilis (laurel) dehydrated to different xylem pressures, and compared results with direct observation of gas-filled vs water-filled conduits at a synchrotron-based microCT facility using a phase contrast imaging modality. Theoretical PLC calculated on the basis of microCT observations in stems of laurel dehydrated to different xylem pressures overall were in agreement with hydraulic measurements, revealing that this species suffers a 50% loss of xylem hydraulic conductance at xylem pressures averaging 3.5 MPa. Our data support the validity of estimates of xylem vulnerability to embolism based on classical hydraulic techniques. We discuss possible causes of discrepancies between data gathered in this study and those of recent independent reports on laurel hydraulics.

X-ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance

NARDINI, Andrea
;
SAVI, TADEJA;PACILÈ, SERENA;TROMBA, GIULIANA;
2017-01-01

Abstract

Drought-induced xylem embolism is a serious threat to plant survival under future climate scenarios. Hence, accurate quantification of species-specific vulnerability to xylem embolism is a key to predict the impact of climate change on vegetation. Low-cost hydraulic measurements of embolism rate have been suggested to be prone to artefacts, thus requiring validation by direct visualization of the functional status of xylem conduits using nondestructive imaging techniques, such as X-ray microtomography (microCT). We measured the percentage loss of conductance (PLC) of excised stems of Laurus nobilis (laurel) dehydrated to different xylem pressures, and compared results with direct observation of gas-filled vs water-filled conduits at a synchrotron-based microCT facility using a phase contrast imaging modality. Theoretical PLC calculated on the basis of microCT observations in stems of laurel dehydrated to different xylem pressures overall were in agreement with hydraulic measurements, revealing that this species suffers a 50% loss of xylem hydraulic conductance at xylem pressures averaging 3.5 MPa. Our data support the validity of estimates of xylem vulnerability to embolism based on classical hydraulic techniques. We discuss possible causes of discrepancies between data gathered in this study and those of recent independent reports on laurel hydraulics.
File in questo prodotto:
File Dimensione Formato  
Nardini_et_al-2016-New_Phytologist.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 682.85 kB
Formato Adobe PDF
682.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2892418_Nardini_et_al-2016-New_Phytologist-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2892418
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 58
social impact