We study the infinitesimal deformations of a trigonal curve that preserve the trigonal series and such that the associate infinitesimal variation of Hodge structure is of rank 1. We show that if g≥8 or g=6,7 and the curve is Maroni general, this locus is zero dimensional. Moreover, we complete the result [10, Theorem 1.6]. We show in fact that if g≥6, the hyperelliptic locus is the only 2g−1-dimensional sub-locus of the moduli space of curves of genus g, such that for the general element its Jacobian is dominated by a hyperelliptic Jacobian of genus g′≥g.
Trigonal Deformations of Rank One and Jacobians
Valentina Beorchia;Francesco Zucconi
2019-01-01
Abstract
We study the infinitesimal deformations of a trigonal curve that preserve the trigonal series and such that the associate infinitesimal variation of Hodge structure is of rank 1. We show that if g≥8 or g=6,7 and the curve is Maroni general, this locus is zero dimensional. Moreover, we complete the result [10, Theorem 1.6]. We show in fact that if g≥6, the hyperelliptic locus is the only 2g−1-dimensional sub-locus of the moduli space of curves of genus g, such that for the general element its Jacobian is dominated by a hyperelliptic Jacobian of genus g′≥g.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1812.09248.pdf
accesso aperto
Descrizione: final version at doi https://doi.org/10.1093/imrn/rnz216
Tipologia:
Documento in Pre-print
Licenza:
Copyright Editore
Dimensione
195.85 kB
Formato
Adobe PDF
|
195.85 kB | Adobe PDF | Visualizza/Apri |
2415317-2-21.pdf
Open Access dal 29/08/2020
Descrizione: final version at doi https://doi.org/10.1093/imrn/rnz216
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Copyright Editore
Dimensione
5.56 MB
Formato
Adobe PDF
|
5.56 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.