The environmental biodegradability profile of graphene related materials (GRMs) is important to know in order to predict whether these materials will accumulate in soil or will be transformed by primary decomposers. In this study, few-layer graphene (FLG) was exposed to living and devitalized axenic cultures of two white-rot basidiomycetes (Bjerkandera adusta and Phanerochaete chrysosporium) and one soil saprotrophic ascomycete (Morchella esculenta) with or without lignin, for a period of four months. Over this time, the increase of fungal biomass and presence of H2O2 and oxidizing enzymes [laccase/peroxidase and lignin peroxidase (LiP)] in growth media was assessed by gravimetric and spectrophotometric measurements, respectively. Raman spectroscopy and transmission electron microscopy (TEM) were used to compare the structure of FLG before and after incubation. All of the test fungi decreased pH in growth media and released H2O2 and laccase/peroxidase, but only basidiomycetes released LiP. Independent of growth media composition all fungi were found to be capable to oxidize FLG to a graphene oxide-like material, including M. esculenta, which released only laccase/peroxidase, i.e. the most common enzymes among primary decomposers. These findings suggest that FLG involuntarily released into terrestrial environments would likely be oxidized by soil microflora.

Graphene environmental biodegradation: Wood degrading and saprotrophic fungi oxidize few-layer graphene

Candotto Carniel, Fabio
;
Fortuna, Lorenzo;Zanelli, Davide;Garrido, Marina;Vázquez, Ester;Prato, Maurizio;Tretiach, Mauro
2021-01-01

Abstract

The environmental biodegradability profile of graphene related materials (GRMs) is important to know in order to predict whether these materials will accumulate in soil or will be transformed by primary decomposers. In this study, few-layer graphene (FLG) was exposed to living and devitalized axenic cultures of two white-rot basidiomycetes (Bjerkandera adusta and Phanerochaete chrysosporium) and one soil saprotrophic ascomycete (Morchella esculenta) with or without lignin, for a period of four months. Over this time, the increase of fungal biomass and presence of H2O2 and oxidizing enzymes [laccase/peroxidase and lignin peroxidase (LiP)] in growth media was assessed by gravimetric and spectrophotometric measurements, respectively. Raman spectroscopy and transmission electron microscopy (TEM) were used to compare the structure of FLG before and after incubation. All of the test fungi decreased pH in growth media and released H2O2 and laccase/peroxidase, but only basidiomycetes released LiP. Independent of growth media composition all fungi were found to be capable to oxidize FLG to a graphene oxide-like material, including M. esculenta, which released only laccase/peroxidase, i.e. the most common enzymes among primary decomposers. These findings suggest that FLG involuntarily released into terrestrial environments would likely be oxidized by soil microflora.
2021
15-lug-2021
Epub ahead of print
https://www.sciencedirect.com/science/article/pii/S0304389421005161
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0304389421005161-main.pdf

accesso aperto

Descrizione: full article
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF Visualizza/Apri
1-s2.0-S0304389421005161-mmc1.pdf

accesso aperto

Descrizione: Supplementary material
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 727.79 kB
Formato Adobe PDF
727.79 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2981884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact