The increasing presence of additive manufacturing (AM) in the space sector prompted us to investigate the feasibility of a single degree of freedom (DoF) pointing system (PS) made by means of a compound planetary gear train system (C-PGTS) integrating a dynamic balancing system (DBS) and entirely realized in AM. We analyzed in detail the dynamics of the system dealing with the design and the realization of the prototype. Of fundamental importance for this paper is the careful selection of materials for AM suitable for the prohibitive conditions of space. The results, deriving from the comparison between the experimental part and the simulations, underline the correct dimensioning of the PS and the fundamental importance of DBS in maintaining the satellite attitude. The results also confirm the capabilities of AM in the production of complex mechanical systems, allowing high precision, combined with interesting mechanical properties and low weight.This suggests the potential of AM in the space domain, both for structural parts and active components, such as those listed in this work.

Dynamically Balanced Pointing System for CubeSats: Study and 3D Printing Manufacturing

Sesto Gorella, Nicholas
;
Caruso, Matteo;Gallina, Paolo;Seriani, Stefano
2021-01-01

Abstract

The increasing presence of additive manufacturing (AM) in the space sector prompted us to investigate the feasibility of a single degree of freedom (DoF) pointing system (PS) made by means of a compound planetary gear train system (C-PGTS) integrating a dynamic balancing system (DBS) and entirely realized in AM. We analyzed in detail the dynamics of the system dealing with the design and the realization of the prototype. Of fundamental importance for this paper is the careful selection of materials for AM suitable for the prohibitive conditions of space. The results, deriving from the comparison between the experimental part and the simulations, underline the correct dimensioning of the PS and the fundamental importance of DBS in maintaining the satellite attitude. The results also confirm the capabilities of AM in the production of complex mechanical systems, allowing high precision, combined with interesting mechanical properties and low weight.This suggests the potential of AM in the space domain, both for structural parts and active components, such as those listed in this work.
2021
8-nov-2021
Pubblicato
File in questo prodotto:
File Dimensione Formato  
robotics-10-00121-v2.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.78 MB
Formato Adobe PDF
3.78 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2999667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact