We extend the theory of lower and upper solutions to planar systems of ordinary differential equations with separated boundary conditions, both in the well-ordered and in the non-well-ordered cases. We are able to deal with general Sturm–Liouville boundary conditions in the well-ordered case, and we analyze the Dirichlet problem in the non-well-ordered case. Our results apply in particular to scalar second order differential equations, including those driven by the mean curvature operator. Higher dimensional systems are also treated, with the same approach.

Two-point boundary value problems for planar systems: A lower and upper solutions approach

Fonda A.
;
Sfecci A.;Toader R.
2022-01-01

Abstract

We extend the theory of lower and upper solutions to planar systems of ordinary differential equations with separated boundary conditions, both in the well-ordered and in the non-well-ordered cases. We are able to deal with general Sturm–Liouville boundary conditions in the well-ordered case, and we analyze the Dirichlet problem in the non-well-ordered case. Our results apply in particular to scalar second order differential equations, including those driven by the mean curvature operator. Higher dimensional systems are also treated, with the same approach.
File in questo prodotto:
File Dimensione Formato  
2022_Fonda-Sfecci-Toader_JDE.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 448.52 kB
Formato Adobe PDF
448.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
3005303_2022_Fonda-Sfecci-Toader_JDE-Post_print.pdf

Open Access dal 20/11/2023

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 934.36 kB
Formato Adobe PDF
934.36 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3005303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact