We present a detailed study of ionized outflows in a large sample of similar to 650 hard X-ray-detected active galactic neuclei (AGNs). Using optical spectroscopy from the BAT AGN Spectroscopic Survey (BASS), we are able to reveal the faint wings of the [OIII] emission lines associated with outflows covering, for the first time, an unexplored range of low AGN bolometric luminosity at low redshift (z similar to 0.05). We test if and how the incidence and velocity of ionized outflow is related to AGN physical parameters: black hole mass (M-BH), gas column density (N-H), Eddington ratio (lambda(Edd)), [OIII], X-ray, and bolometric luminosities. We find a higher occurrence of ionized outflows in type 1.9 (55 per cent) and type 1 AGNs (46 per cent) with respect to type 2 AGNs (24 per cent). While outflows in type 2 AGNs are evenly balanced between blue and red velocity offsets with respect to the [OIII] narrow component, they are almost exclusively blueshifted in type 1 and type 1.9 AGNs. We observe a significant dependence between the outflow occurrence and accretion rate, which becomes relevant at high Eddington ratios [log(lambda(Edd)) greater than or similar to -1.7]. We interpret such behaviour in the framework of covering factor-Eddington ratio dependence. We do not find strong trends of the outflow maximum velocity with AGN physical parameters, as an increase with bolometric luminosity can be only identified when including samples of AGNs at high luminosity and high redshift taken from literature.

{BAT} {AGN} Spectroscopic Survey {\textendash} {XIX}. Type{\hspace{0.167em}}1 versus type{\hspace{0.167em}}2 {AGN} dichotomy from the point of view of ionized outflows

M Bischetti;F Ricci;
2019-01-01

Abstract

We present a detailed study of ionized outflows in a large sample of similar to 650 hard X-ray-detected active galactic neuclei (AGNs). Using optical spectroscopy from the BAT AGN Spectroscopic Survey (BASS), we are able to reveal the faint wings of the [OIII] emission lines associated with outflows covering, for the first time, an unexplored range of low AGN bolometric luminosity at low redshift (z similar to 0.05). We test if and how the incidence and velocity of ionized outflow is related to AGN physical parameters: black hole mass (M-BH), gas column density (N-H), Eddington ratio (lambda(Edd)), [OIII], X-ray, and bolometric luminosities. We find a higher occurrence of ionized outflows in type 1.9 (55 per cent) and type 1 AGNs (46 per cent) with respect to type 2 AGNs (24 per cent). While outflows in type 2 AGNs are evenly balanced between blue and red velocity offsets with respect to the [OIII] narrow component, they are almost exclusively blueshifted in type 1 and type 1.9 AGNs. We observe a significant dependence between the outflow occurrence and accretion rate, which becomes relevant at high Eddington ratios [log(lambda(Edd)) greater than or similar to -1.7]. We interpret such behaviour in the framework of covering factor-Eddington ratio dependence. We do not find strong trends of the outflow maximum velocity with AGN physical parameters, as an increase with bolometric luminosity can be only identified when including samples of AGNs at high luminosity and high redshift taken from literature.
File in questo prodotto:
File Dimensione Formato  
Rojas-2020.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 4.12 MB
Formato Adobe PDF
4.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Rojas-2020-Post_print.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 4.58 MB
Formato Adobe PDF
4.58 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3037076
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact