This study details the synthesis and performance evaluation of a novel lightweight thermal and acoustic insulation material, resulting from the combination of a scleroglucan-based hydrogel and recycled rigid polyurethane waste powder. Through a sublimation-driven water-removal process, a porous three-dimensional network structure is formed, showcasing notable thermal and acoustic insulation properties. Experimental data are presented to highlight the material's performance, including comparisons with commercially available mineral wool and polymeric foams. This material versatility is demonstrated through tunable mechanical, thermal and acoustic characteristics, achieved by strategically adjusting the concentration of the biopolymer and additives. This adaptability positions the material as a promising candidate for different insulation applications. Addressing environmental concerns related to rigid polyurethane waste disposal, the study contributes to the circular economy.

Scleroglucan-Based Foam Incorporating Recycled Rigid Polyurethane Waste for Novel Insulation Material Production

Cozzarini, Luca
;
Marsich, Lucia;Ferluga, Alessio
2024-01-01

Abstract

This study details the synthesis and performance evaluation of a novel lightweight thermal and acoustic insulation material, resulting from the combination of a scleroglucan-based hydrogel and recycled rigid polyurethane waste powder. Through a sublimation-driven water-removal process, a porous three-dimensional network structure is formed, showcasing notable thermal and acoustic insulation properties. Experimental data are presented to highlight the material's performance, including comparisons with commercially available mineral wool and polymeric foams. This material versatility is demonstrated through tunable mechanical, thermal and acoustic characteristics, achieved by strategically adjusting the concentration of the biopolymer and additives. This adaptability positions the material as a promising candidate for different insulation applications. Addressing environmental concerns related to rigid polyurethane waste disposal, the study contributes to the circular economy.
File in questo prodotto:
File Dimensione Formato  
polymers-16-01360.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.84 MB
Formato Adobe PDF
3.84 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3076398
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact