The present study investigates the problem of towing an object that is lying on a surface in a given workspace and the applicability to a planetary rover with four steering wheels. A quasi-static method has been introduced and used for path planning and for the synthesis of both object and rover trajectories. The rover uses a tether as the towing medium, which is modeled as an elastic unilateral constraint. Moreover, a kinematic model of the rover that includes steering asymmetrical joint limits is taken into account. The dynamics model of the overall system is then derived, and a sensitivity analysis is performed over a finite number of different trajectories, in order to evaluate the quasi-static assumption, the effects of the model, and the influence of the elastic constraint. Finally, experiments have been performed using the novel Archimede rover prototype and compared with dynamics simulations; the remarkable adherence shown with the model validates the overall approach.
Towing an Object With a Rover
Caruso, MatteoPrimo
;Sesto Gorella, NicholasSecondo
;Gallina, PaoloPenultimo
;Seriani, Stefano
Ultimo
2025-01-01
Abstract
The present study investigates the problem of towing an object that is lying on a surface in a given workspace and the applicability to a planetary rover with four steering wheels. A quasi-static method has been introduced and used for path planning and for the synthesis of both object and rover trajectories. The rover uses a tether as the towing medium, which is modeled as an elastic unilateral constraint. Moreover, a kinematic model of the rover that includes steering asymmetrical joint limits is taken into account. The dynamics model of the overall system is then derived, and a sensitivity analysis is performed over a finite number of different trajectories, in order to evaluate the quasi-static assumption, the effects of the model, and the influence of the elastic constraint. Finally, experiments have been performed using the novel Archimede rover prototype and compared with dynamics simulations; the remarkable adherence shown with the model validates the overall approach.File | Dimensione | Formato | |
---|---|---|---|
jmr_17_2_021001.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.