In lichens, accurate description of thallus water status is required to understand growth and photosynthesis dynamics. A recent model suggested that myco- and photobiont layers could have a different water energy status (i.e., a different water potential, Ψ) during thallus desiccation, but data supporting this hypothesis were presented only for one chlorolichen. We compared water relations and maximum photosystem II (PSII) efficiency during desiccation in the tripartite lichen Peltigera britannica and its axenically cultured photobionts, the green alga Coccomyxa sp. and the cyanobacterium Nostoc sp. To assess whether myco- and photobiont layers had different Ψ during desiccation, we expected that: i) water relation parameters differ between cultured photobionts and entire thalli; ii) Ψ values inducing a significant drop of PSII efficiency are lower for entire thalli than for cultured photobionts. We found that photobionts had very different water relations parameters than entire thalli, i.e., lower water potential at turgor loss point and higher cell wall elasticity, irrespective of photobiont type, potentially underlying a different drought tolerance. PSII efficiency in entire thalli and cultured photobionts started to decrease below Ψ values inducing turgor loss. Importantly, PSII efficiency in entire thalli decreased at Ψ values significantly more negative than those inducing turgor loss in cultured photobionts. These data support the hypothesis of decoupled Ψ between myco- and photobionts in lichens during desiccation. A higher Ψ ensured to the photobiont layer might represent a key adaptation to prolong photosynthesis during desiccation.

Evidence for decoupled water potential between myco- and photobionts during desiccation in the tripartite lichen Peltigera britannica

Petruzzellis, Francesco
Primo
;
Boccato, Enrico
Secondo
;
Craighero, Teresa;Montagner, Alice;Muggia, Lucia;Tretiach, Mauro;Nardini, Andrea
Penultimo
;
Candotto Carniel, Fabio
Ultimo
2025-01-01

Abstract

In lichens, accurate description of thallus water status is required to understand growth and photosynthesis dynamics. A recent model suggested that myco- and photobiont layers could have a different water energy status (i.e., a different water potential, Ψ) during thallus desiccation, but data supporting this hypothesis were presented only for one chlorolichen. We compared water relations and maximum photosystem II (PSII) efficiency during desiccation in the tripartite lichen Peltigera britannica and its axenically cultured photobionts, the green alga Coccomyxa sp. and the cyanobacterium Nostoc sp. To assess whether myco- and photobiont layers had different Ψ during desiccation, we expected that: i) water relation parameters differ between cultured photobionts and entire thalli; ii) Ψ values inducing a significant drop of PSII efficiency are lower for entire thalli than for cultured photobionts. We found that photobionts had very different water relations parameters than entire thalli, i.e., lower water potential at turgor loss point and higher cell wall elasticity, irrespective of photobiont type, potentially underlying a different drought tolerance. PSII efficiency in entire thalli and cultured photobionts started to decrease below Ψ values inducing turgor loss. Importantly, PSII efficiency in entire thalli decreased at Ψ values significantly more negative than those inducing turgor loss in cultured photobionts. These data support the hypothesis of decoupled Ψ between myco- and photobionts in lichens during desiccation. A higher Ψ ensured to the photobiont layer might represent a key adaptation to prolong photosynthesis during desiccation.
2025
6-dic-2024
Pubblicato
File in questo prodotto:
File Dimensione Formato  
2025_Petruzzellis et al_Evidence for decoupled water potential.pdf

Accesso chiuso

Descrizione: articolo
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3104599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact