Purpose: In the bloodstream, nanoparticles (NPs) interact with serum proteins to form the protein corona, which includes both opsonins, promoting NP recognition and elimination, and dysopsonins, which can inhibit opsonin activity. Albumin, the most abundant serum protein, is part of this corona and can act as a dysopsonin, potentially hiding NPs from the immune system. This study aims to investigate how a covalently bound layer of human serum albumin (HSA) on polymeric NPs affects the protein corona and their behavior in the immune system. Methods: We covalently attached HSA to the surface of polymeric NPs to modify the protein corona composition. These HSA-covered nanostructures were then decorated with an anti-CD19 recombinant antibody fragment to target malignant B cells, specifically acute lymphoblastic leukemia (ALL) cells. The safety profile and bioavailability of these targeted HSA-nanoparticles were evaluated in vitro and in vivo using a human-zebrafish xenograft model of ALL. The efficacy of the nanostructures in delivering encapsulated doxorubicin and suppressing tumor growth was also assessed. Results: The HSA coating on polymeric NPs effectively modified the protein corona, preventing opsonization and subsequent macrophage-mediated elimination. The targeted HSA-nanoparticles maintained a safe profile with reduced macrophage interaction and specifically targeted tumor cells in the xenograft model. This resulted in the successful delivery of doxorubicin, tumor growth suppression, and increased survival of the model organisms. Conclusion: The study demonstrates that HSA-coated nanoparticles can be used as a therapeutic nanoplatform with a safe profile and enhanced bioavailability. The ability to decorate these nanostructures with specific targeting agents, such as anti-CD19 antibodies, opens up the potential for developing versatile therapeutic platforms that can be tailored to target various clinical conditions.
Stealth-Engineered Albumin-Coated Nanoparticles for Targeted Therapy: Effective Drug Delivery and Tumor Suppression in Xenograft-Zebrafish Model
Bozzer S.Primo
Methodology
;Grimaldi M. C.Secondo
Methodology
;De Maso L.Methodology
;Manfredi M.Methodology
;Toffoli G.Resources
;Sblattero D.Penultimo
Data Curation
;Macor P.
Ultimo
Conceptualization
2024-01-01
Abstract
Purpose: In the bloodstream, nanoparticles (NPs) interact with serum proteins to form the protein corona, which includes both opsonins, promoting NP recognition and elimination, and dysopsonins, which can inhibit opsonin activity. Albumin, the most abundant serum protein, is part of this corona and can act as a dysopsonin, potentially hiding NPs from the immune system. This study aims to investigate how a covalently bound layer of human serum albumin (HSA) on polymeric NPs affects the protein corona and their behavior in the immune system. Methods: We covalently attached HSA to the surface of polymeric NPs to modify the protein corona composition. These HSA-covered nanostructures were then decorated with an anti-CD19 recombinant antibody fragment to target malignant B cells, specifically acute lymphoblastic leukemia (ALL) cells. The safety profile and bioavailability of these targeted HSA-nanoparticles were evaluated in vitro and in vivo using a human-zebrafish xenograft model of ALL. The efficacy of the nanostructures in delivering encapsulated doxorubicin and suppressing tumor growth was also assessed. Results: The HSA coating on polymeric NPs effectively modified the protein corona, preventing opsonization and subsequent macrophage-mediated elimination. The targeted HSA-nanoparticles maintained a safe profile with reduced macrophage interaction and specifically targeted tumor cells in the xenograft model. This resulted in the successful delivery of doxorubicin, tumor growth suppression, and increased survival of the model organisms. Conclusion: The study demonstrates that HSA-coated nanoparticles can be used as a therapeutic nanoplatform with a safe profile and enhanced bioavailability. The ability to decorate these nanostructures with specific targeting agents, such as anti-CD19 antibodies, opens up the potential for developing versatile therapeutic platforms that can be tailored to target various clinical conditions.| File | Dimensione | Formato | |
|---|---|---|---|
|
Bozzer, IJN,2024.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
12.15 MB
Formato
Adobe PDF
|
12.15 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


