Nutrient-rich baby foods are required with particularly high standards of quality and safety expressed through product specifications or attributes. These foods are generally subjected to thermal processes that could involve a reduction of essential elements, as well as in the formation of potentially harmful molecules. This paper aimed at detecting the presence, in some baby foods, of compounds derived from Maillard reactions, 5-hydroxymethylfurfural (HMF) and total Maillard Reaction Products (MRPs), as well as at evaluating the hypothetical levels of HMF daily intake by infants and children fed with the tested products. Baby food samples included milk powders, lyophilized meat-based foods, powdered creams based on cereals, homogenized jarred foods based on processed cheese, fish, vegetables, and meat. As far as the healthiness of the tested foods is concerned, significant quantities of total MRPs were found. The lyophilized meat-based foods samples showed the highest levels of total MRPs. At 380 nm, all the samples exceeded the total MRPs concentration of 1000 mg/100g. The analysis revealed the presence of HMF in all the samples under study. However, none of the samples exceeded the threshold concentration of 20 mg/Kg. The highest values were recorded for the category of lyophilized meat-based foods and for a sample of homogenized veal-based food. The results for the hypothetical daily levels of HMF intake by babies showed that, for the age group over 12 months, a value of 3.6 mg was reached. The largest percentage contribution was imputable to the homogenized jarred foods based on proteins and vegetables.

Quality and Safety in Commercial Baby Foods

CALABRETTI, ANTONELLA;CALABRESE, MASSIMO;CAMPISI, BARBARA;BOGONI, PAOLO
2017-01-01

Abstract

Nutrient-rich baby foods are required with particularly high standards of quality and safety expressed through product specifications or attributes. These foods are generally subjected to thermal processes that could involve a reduction of essential elements, as well as in the formation of potentially harmful molecules. This paper aimed at detecting the presence, in some baby foods, of compounds derived from Maillard reactions, 5-hydroxymethylfurfural (HMF) and total Maillard Reaction Products (MRPs), as well as at evaluating the hypothetical levels of HMF daily intake by infants and children fed with the tested products. Baby food samples included milk powders, lyophilized meat-based foods, powdered creams based on cereals, homogenized jarred foods based on processed cheese, fish, vegetables, and meat. As far as the healthiness of the tested foods is concerned, significant quantities of total MRPs were found. The lyophilized meat-based foods samples showed the highest levels of total MRPs. At 380 nm, all the samples exceeded the total MRPs concentration of 1000 mg/100g. The analysis revealed the presence of HMF in all the samples under study. However, none of the samples exceeded the threshold concentration of 20 mg/Kg. The highest values were recorded for the category of lyophilized meat-based foods and for a sample of homogenized veal-based food. The results for the hypothetical daily levels of HMF intake by babies showed that, for the age group over 12 months, a value of 3.6 mg was reached. The largest percentage contribution was imputable to the homogenized jarred foods based on proteins and vegetables.
2017
29-lug-2017
Pubblicato
File in questo prodotto:
File Dimensione Formato  
jfnr-5-8-9-2.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 177.22 kB
Formato Adobe PDF
177.22 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2908248
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact